EVAHEART LVAS

5. 定期点検

5.1	日常点	検	5-5
	5.1.1	AC/DC アダプタからの電力供給	5-5
	5.1.2	アラームの確認	5-5
	5.1.3	バックアップコントローラと満充電バッテリの確保	5-5
	5.1.4	外観確認	5-6
5.2	毎月の	点検	5-7
	5.2.1	外観チェック	5-7
	5.2.2	コントローラ内部のチェック	5-8
	5.2.3	イベントデータの確認	5-9
	5.2.4	システムの動作とトレンドデータの確認	5-9
	5.2.5	非常用バッテリの点検	5-9
	5.2.6	クールシールシステム	5-10
5.3	クール	シールユニット交換	5-14
	5.3.1	準備品の確認	5-17
	5.3.2	AC/DC アダプタと外部モニタの接続	5-17
	5.3.3	クールシールシステムの停止	5-17
	5.3.4	クールシール流路洗浄キットの接続	5-17
	5.3.5	クールシール液流路の洗浄	5-20
	5.3.6	新・旧のクールシールユニット交換	5-21
	5.3.7	クールシールシステムの起動	5-22
	5.3.8	AC/DC アダプタと外部モニタの取り外し	5-22
5.4	クール	シール液流路洗浄	5-23
	5.4.1	コントローラの準備	5-25
	5.4.2	クールシール流路洗浄キットの接続	5-26
	5.4.3	クールシール液流路の洗浄	5-28
	5.4.4	クールシールシステムの再起動	5-28
5.5	非常用	バッテリ交換	5-29
	5.5.1	古い非常用バッテリの取り外し	5-29
	5.5.2	新しい非常用バッテリの装着	5-30
F C	1×		E 22
0.0	ハック.	アッノコノトローノ00元快	5-32
	5.6.1	点検手順	5-32
5.7	コントロ	ローラ交換	5-33
	5.7.1	新コントローラのセットアップ	5-36

製**7** 日 仕様

定 **5** 期点検

EVAHEART C02シリーズ 取扱説明書〔機器操作・機器管理編〕

	5.7.2	交換準備	5-36
	5.7.3	医師の診察とパラメータの記録	5-36
	5.7.4	新コントローラの準備	5-37
	5.7.5	コントローラの交換	5-38
	5.7.6	クールシールユニットの移動	5-39
	5.7.7	医師の診察とシステムの動作確認	5-40
	5.7.8	旧コントローラの使用終了	5-40
5.8	システム	ムの保管とメンテナンス	5-41
	5.8.1	保管方法	5-41
	5.8.2	環境条件	5-42
	5.8.3	保管中の定期点検	5-43

EVAHEARTシステムを快適にご使用いただき、また致命的な事故のリスクを軽減するために、点検を定期的に行ってください。

定期点検は、患者が入院しているときや外来時に医療従事者が行います。

 正常に使用できていても、定期点検のスケジュール通りに、コントローラおよびクールシールユニットの 交換を行ってください。
 目に見えなくても、長い間の使用でシステムが劣化や磨耗しているおそれがあります。

下記のリストは点検項目とスケジュールを示します。コンポーネントの点検項目や予防交換は医療従事 者の判断にて必要に応じ行ってください。

ここに書かれている点検項目は毎日、毎月、3ヶ月、6ヶ月、2年毎に行われる項目です。

定 **5** 期点検

上检查口	スケジュール				
品快 识日	毎日	毎月	3ヶ月毎	6ヶ月毎	2年毎
AC/DCアダプタとバッテリからの電力供給	•				
コントローラの表示確認	•				
バックアップコントローラと満充電バッテリの確保	•				
目視確認 • コントローラとベンドリリーフ • ポンプケーブル • バッテリ • バックアップコントローラ	•				
外観チェック • ディスプレイ • 電源関連(AC/DCアダプタ、バッテリ、充電器) • キャリングバッグ		•			
コントローラ内部のチェック		•			
非常用バッテリの点検 (使用中のコントローラ装着分)		•			
イベントデータの確認		•			
トレンドデータの確認		•			
クールシールユニットの点検		•			
クールシール液の補液		●			
クールシール液の流路洗浄			•		
クールシールユニットの定期交換			•		
非常用バッテリの定期交換				•	
バックアップコントローラの点検				•	
コントローラの定期交換					•

● 交換時期

製品	耐久性
クールシールユニット	3ヶ月
非常用バッテリ	6ヶ月
コントローラ	2年

血液ポンプ、クールシールユニット、コントローラなどのコンポーネントはReliabilityレベル80%、 Confidenceレベル90%の信頼性を持つ。

5.1 日常点検

5.1.1 AC/DCアダプタからの電力供給

- 1. AC/DCアダプタをコントローラに接続します。
- **2.** AC/DCアダプタをAC電源に接続し、AC/DC接続ランプが緑に点灯することを確認します。
 - a. 上記の反応が起こらなかった場合は、別のAC/DCアダプタまたは別のAC電源で試してみてください。
 - b. AC電源からの出力が正常であるにもかかわらず、新しいAC/DCアダプタが電力供給を行わない場合は、コントローラ交換を行ってください。
- 3. コントローラからAC/DCアダプタを外し、バッテリ駆動に切り替わったことを確認します。
 - AC/DCアダプタを外したとき、確認音がすること
 - AC/DC 接続ランプが消灯すること
 - バッテリ1(2) 使用ランプが点灯すること
- 4. AC/DCアダプタをコントローラに接続します。

5.1.2 アラームの確認

EVAHEART システムがAC/DCアダプタからの電力供給動作状態のとき、アラームのないことを表示 パネルで確認してください。

- パイロットランプが緑点灯していることを確認します。
 a. 消灯している場合は、手順2以下を確認してください。
- システムアラームランプが消灯していることを確認します。
 a. 赤ランプが点滅している場合は、「4.1.1アラーム」を参照してください。
- クールシールアラームランプが消灯していることを確認します。
 a. 黄ランプが点滅している場合は、「4.1.1アラーム」を参照してください。
- 4. バッテリアラームランプが消灯していることを確認します。
- バッテリエンプティランプが消灯していることを確認します。
 a. 赤点滅および赤点灯している場合は、満充電のバッテリと交換してください。必要に応じて、外したバッテリの充電を行ってください。

5.1.3 バックアップコントローラと満充電バッテリの確保

▲警告

 緊急時に備えて、患者は常にバックアップコントローラと予備の満充電バッテリ数個をいつでも使える 場所に用意してください。

 バックアップコントローラ1つと予備の満充電バッテリ数個が、患者のそばにあることを確認 します。

患者は下記のコンポーネントを常に持ち歩いてください。

- バックアップコントローラ 1個
- 交換用満充電バッテリ 1本以上

定 **5** 期_点検 患者が長時間外出する場合、下記のコンポーネントも携帯することを勧めてください。

- AC/DCアダプタ(コントローラ用) 1個
- AC/DCアダプタ(充電器用) 1個
- 充電器 1個

5.1.4 外観確認

コントローラとベンドリリーフ:

コントローラの外観に亀裂などの破損箇所がないかどうかを目視点検します。水漏れが起き ていないことやベンドリリーフやポンプケーブルに緩みが無いことを確認します。また、コ ネクタの破損を確認します。

- a. コントローラに染みやホコリが見られた場合には、湿らせた布で拭き取ります。染みが 落ちない場合は、少量のアルコールを使用して拭きます。
- b. 破損を発見した場合は「5.7コントローラ交換」に従ってコントローラを交換してください。
- c. ベンドリリーフやポンプケーブルに緩みがある場合は、トップサイドケースのネジを締め直してください。
- **2.** ポンプケーブル:

ポンプケーブルの外観に穴、裂け目、素材の劣化などがあるかどうかを確認します。

- a. 上記のような破損を発見した場合は、ポンプケーブル内のクールシールチューブおよび
 電線に破損がないかどうかを確認し、テクニカルサポートまで連絡してください。
 b. ポンプケーブルにねじれがある場合にはねじれを直してください。
- **3.** バッテリ:

外装やケーブルに亀裂などの破損箇所がないかどうかを確認します。 破損箇所が発見された場合は、直ちにそのバッテリの使用を中止し、新しいバッテリを使用 してください。

4. バックアップコントローラ:

外装やコネクタの破損とコネクタへの異物のつまりがないかどうかを確認します。 破損が発見された場合は、新品のバックアップコントローラと交換してください。

5.2 毎月の点検

目視点検は、EVAHEARTシステム構成品および付属品に、亀裂や液漏れなどの破損や劣化がないかどうかを1ヶ月に1回行います。

5.2.1 外観チェック

- 1. コントローラをキャリングバッグから取り出し、作業台の上に置きます。
- **2.** ディスプレイ:

イルミネーションボタンを押し、ディスプレイに表れる表示が鮮明であることを確認します。表示が読みにくくなっている場合は、「5.7コントローラ交換」に従ってコントローラを 交換してください。

- コントローラ、バックアップコントローラ、AC/DC アダプタ、バッテリ、充電器の外観に亀裂や破損がないか確認します。
- **4.** コントローラ、AC/DCアダプタ、バッテリのコネクタに破損がないかどうかを確認します。 外装やケーブルに亀裂などの破損箇所がないか確認します。
- 5. キャリングバッグ:

外装やストラップに使用上支障となる破損がないかどうかを確認します。 破損が発見された場合は、新品のキャリングバッグと交換してください。 定 **5** 期点検

5.2.2 コントローラ内部のチェック

コントローラの内部とクールシールユニットを目視点検します。水漏れやチューブ、ケーブルの収納 状態を以下の手順に従って点検します。

- 1. コントローラを寝かせて作業台に置きます。
- レバーを矢印の方向にスライドさせ、コントローラのフタを開けます。開けるとディスプレイの表示が反転します。
- 表示パネル/アラームランプ: テストボタンを押し、表示パネルのすべてのランプが点灯することと、ブザーが鳴ることを 確認します。
 - a. 表示パネル/アラームランプに異常を発見した場合は、「5.7コントローラ交換」に従っ てコントローラを交換してください。
- 駆動ケーブルおよびクールシールチューブに、キンクやねじれ等断線を引き起こすような過 剰なストレスがかかっていないことを確認します。

図5.1 キンクおよびねじれのチェック

- 5. クールシールチューブの外観に穴、裂け目、割れがないかどうかを確認します。
 - a. クールシールチューブに破損を発見した場合は、サンメディカル技術研究所テクニカル サポートまでご連絡ください。
 - b. クールシールユニット側のカプラーに破損を発見した場合は、「5.3クールシールユニット交換」に従ってクールシールユニットを交換してください。
- 6. 水漏れや浸水の痕跡がないかどうかを確認します。
 - a. コントローラ内部に液体を発見した場合は、乾燥した布またはスポンジで完全に拭き取ります。
 - b. 液染みを発見した場合は、中性洗剤またはアルコールで濡らした布で拭き取ります。
 - c. 液漏れがある場合は、液漏れ箇所を特定し、適切な対応をしてください。
- **7.** ベンドリリーフ:

ベンドリリーフの外観に亀裂や素材の劣化などの破損がないかどうかを確認します。

a. トップサイドケースのネジに緩みがある場合は、締め直してください。ネジを締め直し ても緩みがある場合や、破損を発見した場合は、サンメディカル技術研究所テクニカル サポートまでご連絡ください。

5.2.3 イベントデータの確認

1. 外部モニタの電源を入れ、コントローラに接続します。電源が立ち上がると、Blood Pump Graph 画面が自動的に表示されます。

外部モニタの接続と起動方法については「6.外部モニタの使い方」を参照してください。

2. Data Logs画面の [Data Selection] タブをタッチします。

- 外部モニタとコントローラが正しく接続されていることを確認し、[Download from Controller] ボタンをタッチします。ダウンロード画面が表示されます。ダウンロードが完了すると、確認 メッセージ画面が表示されます。
- 4. 確認メッセージ画面の [OK] ボタンをタッチします。
- 5. ダウンロードが終了すると、[Patient ID] リストが最新の状態に更新されます。 イベントデータについては最近発生したアラームがあるかどうかを確認します。過去に発生 したアラームが存在する場合は、原因を特定します。

5.2.4 システムの動作とトレンドデータの確認

外部モニタを用いることで、本システムの動作履歴が確認できます。

- 外部モニタを用いて下記の動作パラメータとトレンドデータを確認します。
 a. 血液ポンプスピード(rpm)
 月毎の定期点検で、設定したスピード±500rpm以内にあることを確認してください。
 - b. 消費電力(W) トレンドデータを見て、特異な波形がないことを確認してください。特異な波形があった場合は、サンメディカル技術研究所テクニカルサポートまでご連絡ください。
 - c. Delta P (膜間圧力差 Delta P = FPin FPout)
 正常範囲は5kPa以上60kPa以下です。
 Delta Pが正常範囲外である場合は、「5.3クールシールユニット交換」に従ってクール
 シールユニットを交換してください。
- 聴診器を用いて、血液ポンプ音を聞いてください。通常の動作音とは異なった音が聞こえ、上記のパラメータに異常値が確認された場合は、直ちにサンメディカル技術研究所テクニカルサポートまでご連絡ください。

5.2.5 非常用バッテリの点検

- コントローラの操作パネルにある非常用バッテリ残量ランプで非常用バッテリの残量を確認します。
 - a. 非常用バッテリランプが赤もしくは赤と黄色のみ点灯している場合は、外部モニタを用いてイベントデータを確認し、非常用バッテリの使用履歴を確認してください。
 - b. 使用履歴がない場合は、「5.5非常用バッテリ交換」に従って非常用バッテリを交換して ください。
 - c. 使用履歴があれば、AC/DCアダプタをコントローラに接続し、非常用バッテリを充電してください。充電には約2時間 (残量なしの状態から満充電まで) かかります。
 - d. 充電後も非常用バッテリランプの緑が点灯しない場合は、「5.5非常用バッテリ交換」に 従って非常用バッテリを交換してください。

定 **5** 期_点検

患者の [ID] が設定されていない場合は、Controller Config-Patient Info画面で 患者情報を入力してください。 ID 未入力のままデータのダウンロードをすると、患 者 ID名のフォルダ内に格納されないため、誰のデータか分からなくなるおそれがあ ります。

5.2.6 クールシールシステム

- クールシール液の流路やカプラー接続部、採液ポート等を不潔にしないでください。 クールシール液が汚染され、患者が敗血症になるおそれがあります。
- クールシール液として使用できるのは注射用水のみです。それ以外の液体は決して使用しないでください。

クールシールシステムは注射用水を使用することを前提とした設計になっています。他の液体を 使った場合、品質の保証ができません。またわずかながら、クールシール液が血液に入りますの で、体内への影響の可能性があります。

 クールシールユニットの操作(クールシールユニット交換、クールシール液流路洗浄、クールシール 液補液等)は医療用手袋を装着して行ってください。
 クールシール液に血液成分が混入し導電性が生じた場合、操作者の静電気がクールシール液を伝わり患者の心臓へ到達するのを防ぐためです。

- 必要に応じて、クールシール液を所定量まで補充してください。 補充を忘れると、クールシール液量の過剰消費が検知できません。また、補液を怠るとクール シール液が空になり、補液のための外来機会を増やすことになります。
- 必要に応じて、クールシールユニット内リザーバのエア抜きを実施してください。
 クールシールユニットのポンプにエアが行き、一時的にクールシール液を送液できないことがあります。
- (1) クールシール液量と色
 - 1. コントローラのフタを開けます。
 - 2. クールシール液量の過剰消費がないことやリザーバの残量を確認して、最大補液量インディ ケータの"FULL"が浮かび上がるまで補液を行います。

들 Note) リザーバの液量が減っている場合、イベントコード "E-43" が発生します。

■定期点検■■■

- クールシール液の過剰消費が確認された場合やそれが疑われる場合は、クールシールユニット内部やコントローラにクールシール液が漏れているかどうかを確認します。
 - a. クールシール液の漏れが確認された場合は、どこから液漏れが発生しているかを確認してください。液漏れが起こっている箇所により、交換等の対処をしてください。

Note どこからも液漏れがなく、頻繁に補液を必要とする場合、テクニカルサポートへ連絡してください。

- b. 液漏れが確認されなかった場合は、「5.4クールシール液流路洗浄」に従って流路洗浄を 行ってください。
- c. 液漏れが確認されず、問題解決しない場合は、緊急性の低いポンプ交換を考慮してください。
- 4. クールシール液の色を確認します。クールシール液の色は通常無色透明です。
 - a. クールシール液が赤みを帯びていたり、その他の色の変化がある場合は、「5.4クール シール液流路洗浄」に従って流路洗浄を行ってください。
 - b. 問題解決しない場合は、「4.1.3流路洗浄時の漏血の対処方法」に従って対処してください。
- 5. コントローラのフタを閉めます。

(2) クールシール液の検査

クールシール液の汚染が疑われる場合は、クールシール液の検査を行ってください。

用意するもの

- シリンジ (20ml ロック付き)
- 針
- 密封試験管等
- 酒精綿
- 1. コントローラのフタを開けます。
- コントローラを採液ポートが上になるように置きます。

ここから無菌操作になります。 >>>>>>

- 3. 採液ポートを酒精綿で拭き、消毒します。
- **4.** 採液ポートにシリンジ(20ml)を接続します。
- 5. クールシール液を20ml採液します。
- 6. 採液ポートからシリンジを外し、シリンジに針をセットします。
- 7. 1本の試験管等に10mlのクールシール液を注入します。別の試験管等に残りの10mlを注入します。

ここまで無菌操作です。 <<<<<<

定 **5** 期_点検 8.2つのサンプルを細菌培養試験等各種検査に出します。

- a. クールシール液から細菌が検出された場合、またはそれが疑われる場合は、クールシー ル液流路を洗浄し、クールシールユニットを交換してください。また、サンメディカル 技術研究所テクニカルサポートまでご連絡ください。
 - クールシール液流路の洗浄方法については、「5.4クールシール液流路洗浄」を
 参照してください。
 - **Refer** クールシールユニットの交換方法については、「5.3 クールシールユニット交換」 を参照してください。
- 9. コントローラのフタを閉めます。

(3)リザーバのエア抜き

用意するもの

- シリンジ (50ml ロック付き)
- 酒精綿
- 1. コントローラのフタを開けます。
- コントローラを採液ポートが上になるように置きます。

ここから無菌操作になります。 >>>>>>

- 3. 採液ポートを酒精綿で拭きます。
- 4. 清潔に採液ポートにシリンジを接続し、リザーバからエアを抜きます。

この手順を省略すると、エアによりクールシールの性能が低下する可能性があります。

図5.3 リザーバのエア抜き

5. シリンジを採液ポートから外します。

ここまで無菌操作です。 <<<<<<

6. コントローラのフタを閉めます。

(4)リザーバへの補液

用意するもの

- 注射用水
- シリンジ (50ml ロック付き)
- 針
- 酒精綿
- 1. コントローラのフタを開けます。
- 2. コントローラを採液ポートが上になるように置きます。

ここから無菌操作になります。 >>>>>

- 3. シリンジに、針をセットして注射用水を50ml充填します。
- 4. シリンジから針を外します。

Caution 採液ポートに針を使用すると、クールシールユニットの故障の原因になります。

- 5. 採液ポートを酒精綿で拭きます。
- 採液ポートにシリンジを接続し、注射用水をリザーバに注入します。最大補液量インディケー タの"FULL"が浮かび上がるまで補液します。
- 7. シリンジを採液ポートから外します。
- 8. 手順2.~手順6.をリザーバのクールシール液が最大量60mlになるまで繰り返します。

ここまで無菌操作です。<<<<<<

9. コントローラのフタを閉めます。

定 5 点 検

5.3 クールシールユニット交換

クールシールユニットの交換は、通常3ヶ月に一度、定期点検の一環として行います。また、クールシー ルユニットに異常が発生した際の対処や予防的に交換が必要と判断したときにも行います。

クールシールユニットの交換は、トレーニングを受けた医療従事者が行います。

クールシールユニットの交換は、準無菌操作で行ってください。

シリンジの差し替え時に空気が入るのを防止し、血液ポンプのメカニカルシールが乖離するよう

な水圧の発生を防止します。

■定期点検■■■

クールシールユニット交換に必要なEVAHEARTシステム構成品および付属品、病院備品は以下の通りです。

システム構成品および付属品

構成品	滅菌	数量	説明/用途
クールシールユニット		1	クールシールユニットプライミング手順 に従い事前にプライミングしておきます。
外部モニタ		1	クールシール圧力の観察をします。
外部モニタ接続ケーブル		1	コントローラに外部モニタを接続します。
AC/DCアダプタ		1	クールシールユニット交換時に電力供給 をします。
クールシール流路洗浄キット		1	構成品は洗浄チューブ、排液チューブ、カ プラーキャップです。

病院備品

備品	滅菌	数量	説明/用途
注射用水バッグ (500ml以上のもの)		1	注射用水はゴム栓タイプのパックまたはボ トルを使用してください。 注射用水をクールシール液として使用しま す。
医療用手袋		1	業者を感染から守り、患者へ静電気が伝わ るのを防止します。
酒精綿		適量	必要に応じて、清潔部位の消毒に使用しま す。
作業台		1	
輸液セット		1	血液ポンプのクールシール液流路内に漏血
三方活栓		1	21世前しに場合に使用しよ9。
点滴スタンド		1	

手順の中に、旧クールシールユニットと新クールシールユニットという表現がありますが、

● 旧クールシールユニット→現在使用中のクールシールユニット

新クールシールユニット→交換用のプライミング済みクールシールユニット を示しています。

Refer

血液ポンプのクールシール液流路内に漏血を確認した場合、「4.1.3流路洗浄時の漏血の 対処方法」を参照してください。 旧クールシールユニット、新クールシールユニットともに、以下の清潔部位には手を触れないでください。汚染の原因となります。汚染されたクールシール液が循環すると、患者が感染症にかかるおそれがあります。清潔部位を汚染してしまったおそれがあるときは、酒精綿できれいに拭くか、予備の部品・構成品と交換してください。

5.3.1 準備品の確認

 プライミング済みの新クールシールユニットの外観に亀裂、変色、変形、水漏れがないか、リ ザーバのクールシール液の量が適量であるかどうかを確認します。

5.3.2 AC/DCアダプタと外部モニタの接続

- 1. 患者を仰臥位に寝かせます。
- 2. AC/DCアダプタをAC電源に接続します。
- 3. コントローラのAC/DC アダプタ接続部のキャップを外し、コネクタの赤い印を合わせて接続します。確認音が鳴り、表示パネルのAC/DC 接続ランプが緑に点灯します。
- 4. 外部モニタの電源を入れ、コントローラに接続します。電源が立ち上がると、Blood Pump Graph 画面が自動的に表示されます。

接続と起動方法については「6.2外部モニタの起動と終了」、「6.3コントローラとの接続」を参照してください。

5. レバーを矢印の方向にスライドさせて、コントローラのフタを開けます。開けるとディスプ レイの表示が反転します。

5.3.3 クールシールシステムの停止

操作パネルのクールシールボタンを3秒以上長押しして、クールシールシステムを停止させます。クールシールボタンのランプが消灯し、操作音が鳴ります。

Oールシールシステムの停止は直ちに血液ポンプの駆動に影響を与えることはありませんが、停止後24時間以内に作業を完了されることをお勧めします。

クールシールシステムを起動/停止する際は、誤って血液ポンプボタンを押さないでください。
 血液ポンプが停止し、患者が死亡するおそれがあります。

5.3.4 クールシール流路洗浄キットの接続

- クールシール流路洗浄キットの滅菌パックのインディケータを確認します。また、期限切れ、 滅菌パックに破れ、穴がないことも併せて確認します。
- 2. 滅菌パックを開封し、クールシール流路洗浄キットを清潔野に出します。
- **3.** クールシール流路洗浄キットに破れ、穴、コネクタの破損などの損傷がないかどうかを確認 します。

ここから無菌操作になります。>>>>>>

4. 注射用水500ml を点滴スタンドに掛け、輸液セット、三方活栓を接続し充填します。

血液ポンプのクールシール液流路内に漏血を確認した場合、4.で準備した注射用水を使用します。

- 5. シリンジ2本に、注射用水をそれぞれ50mlずつ充填します。
- 6. カプラーキャップを滅菌パックから取り出します。

7. クールシールチューブのカプラー(赤側)をクールシールユニットから外します。

外すときは、必ずカプラー(赤側)→カプラー(青側)の順で作業を行ってくださ い。逆の順番で作業を行うと、カプラー(青側)からクールシール液が漏れます。 コントローラ内に入ると、故障したり、破損するおそれがあります。

- クールシールチューブのカプラーにカプラーキャップを接続します。クールシールユニット 側は交換しますので、不潔になっても構いません。
- 9. クールシールチューブのカプラー(青側)をクールシールユニットから外します。
- 10. クールシールチューブのカプラーにカプラーキャップを接続します。
- 11. クールシール流路洗浄キットが入った滅菌パックを開封します。
- 12. 滅菌パックから洗浄チューブ(赤側)を取り出します。
- **13.** 洗浄チューブ (赤側) に1本目のシリンジを接続し、洗浄チューブのルート内をプライミング します。
- **14.** クールシールチューブのカプラー(赤側)のキャップを外し、洗浄チューブ(赤側)を接続 します。

15. クールシールチューブのカプラー(青側)のキャップを外し、排液チューブ(青側、排液バッ グ付)を接続します。

16. 排液バッグの三方活栓を閉めます。洗浄キットの組立は完了です。

定 5 点検 5.3.5 クールシール液流路の洗浄

- クールシール液流路洗浄手順においては、空気を送り込まないよう十分注意してください。 洗浄手順ではクールシールユニットを用いて循環しているときより水圧が高く、血液ポンプのメ カニカルシールが乖離して血液内に空気が混入するおそれがあります。
- **クールシール液流路洗浄手順においては、シリンジの押し子を引かないように注意してください。** 空気を吸い込み、その後陽圧を掛けたときなどに空気が大量に血液中に入る可能性があります。
 - シリンジのピストンをなるべく一定の速さで押し、10~20秒程度かかるように注射用水を流します。あまりにも時間がかかりすぎると、効果がありません。

- 排液バッグ内にクールシール液が排液されていることを確認します。
- 3. 1本目のシリンジの注射用水すべてを流し終えたら、2本目のシリンジに交換します。
- 4. 手順1と同様にして2本目のシリンジ内の注射用水を流します。
- 5. カプラーキャップが入った滅菌パックを開封します。
- クールシールチューブのカプラー(青側)から排液チューブを外し、カプラーキャップを接続します。
- クールシールチューブのカプラー(赤側)から洗浄チューブを外し、カプラーキャップを接続します。
- 8. 排液バックを廃棄します。

ここまで無菌操作です。 <<<<<<

5.3.6 新・旧のクールシールユニット交換

 I. 旧クールシールユニットのクリップを外し、旧クールシールユニットをコントローラから取り出します。

図5.8 クールシールユニットを取り出したところ

プライミングが完了した新クールシールユニットをコントローラに収納し、クリップで固定します。

図5.9 クールシールユニットの収納

ここから無菌操作になります。>>>>>>

- 3. 新クールシールユニットのカプラー(青側)のシャントチューブを外します。
- 4. クールシールチューブ(青側)のカプラーキャップを外します。
- 5. 新クールシールユニットのカプラー(青側)と接続します。

■ Note) 接続前にクールシールラインがキンク、交差などしないように注意してください。

接続時は、必ずカプラー(青側)→カプラー(赤側)の順で作業を行ってくださ Caution い。逆の順番で作業を行うと、カプラー(青側)からクールシール液が漏れま す。コントローラ内に入ると、故障したり、破損するおそれがあります。

- 6. 新クールシールユニットのカプラー(赤側)のシャントチューブを外します。
- 7. クールシールチューブ(赤側)のカプラーキャップを外します。

定 **5** 期点検 8. 新クールシールユニットのカプラー(赤側)と接続します。

■ Note 接続前にクールシールラインがキンク、交差などしないように注意してください。

ここまで無菌操作です。 <<<<<<

- 5.3.7 クールシールシステムの起動
- 注意
 ・ クールシールチューブをキンクさせないように、扱いには十分注意してください。

 ー度キンク癖が付くとキンクしやすくなり、最悪の場合は、キンク癖が付いた部分からクール
 シール液が漏れる可能性があります。
 - 1. 駆動ケーブルおよびクールシールチューブの収納状況を確認します。

- 操作パネルのクールシールボタンを押します。クールシールボタンランプが点灯し、操作音が鳴ります。
- 3. クールシールシステムが正常に(アラームがない状態で)動いていることを確認します。

📴 Refer)外部モニタでの確認方法については「6.外部モニタの使い方」を参照してください。

4. コントローラのフタを閉めます。

5.3.8 AC/DCアダプタと外部モニタの取り外し

- 表示パネルのバッテリエンプティランプ1、2が赤点滅または赤点灯していないことを確認します。赤点滅または赤点灯している場合、満充電のバッテリに交換します。
- 2. コントローラから外部モニタを取り外します。
- 3. コントローラからAC/DCアダプタを取り外します。

5.4 クールシール液流路洗浄

クールシール液流路の洗浄は、以下のようなときに行います。

- 1) クールシールユニット定期交換時
- 2) 各種トラブルシューティング時に必要なとき
- 3) クールシール液の異常消費が確認されたとき
- 4) 血液ポンプのスピードや消費電力に不安定な傾向が見られるなど、何らかの予防的対処が望ましいと判断されたとき

クールシール液流路の洗浄は医師の指示のもとで医療従事者が行います。また、作業は無菌操作で行ってください。

- クールシール液の流路やカプラー接続部、採液ポート等を不潔にしないでください。
 クールシール液が汚染され、患者が敗血症になるおそれがあります。
- クールシール液およびクールシール液流路の洗浄液として使用できるのは注射用水のみです。それ以外の液体は決して使用しないでください。
 クールシールシステムは注射用水を使用することを前提とした設計になっています。他の液体を使った場合、品質の保証ができません。またわずかながら、クールシール液が血液に入りますので、体内への影響の可能性があります。
- クールシールユニットの操作(クールシールユニット交換、クールシール液流路洗浄、クールシール 液補液等)は医療用手袋を装着して行ってください。
 クールシール液に血液成分が混入し導電性が生じた場合、操作者の静電気がクールシール液を伝わり患者の心臓へ到達するのを防ぐためです。
- クールシール液流路洗浄手順においては、空気を送り込まないよう十分注意してください。 洗浄手順ではクールシールユニットを用いて循環しているときより水圧が高く、血液ポンプのメ カニカルシールが乖離して血液内に空気が混入するおそれがあります。
- クールシール液流路洗浄手順においては、シリンジの押し子を引かないように注意してください。
 空気を吸い込み、その後陽圧を掛けたときなどに空気が大量に血液中に入る可能性があります。

使用前に、亀裂、変色、破損が見つかった製品や落下などの強い衝撃を与えた製品は使用せず、交換してください。

製品が故障している可能性があります。

- **滅菌パックに穴や破れなどの破損が見つかった製品は、使用しないでください。** 無菌性が保たれていません。
- クールシール液流路洗浄手順においては、必ず50mlのシリンジを使用してください。
 それより小さいシリンジを用いると水圧が高くなり、注射用水が血液内に大量に入るおそれがあります。
- クールシール液流路洗浄手順においては、ドレーン(排液チューブ(青))から水が出てきていることを確認しながら作業を行ってください。
 水が出てこない場合は、流路がつまり、すべての水が体内に入っているおそれがあります。この場合は直ちに流路洗浄手順を中止し、サンメディカル技術研究所テクニカルサポートまでご連絡ください。
- クールシール液流路洗浄の際には閉鎖弁を取らずに作業を行ってください。
 シリンジの差し替え時に空気が入るのを防止し、血液ポンプのメカニカルシールが乖離するような水圧の発生を防止します。

クールシール液流路洗浄に必要なEVAHEARTシステム付属品および病院備品は以下の通りです。

システム付属品

付属品 (クールシール流路洗浄キット)	滅菌	数量	説明/用途
洗浄チューブ(赤側)		1	シリンジとクールシールチューブ(赤側:往路) を接続します。 閉鎖弁が付いています。
排液チューブ(青側)		1	クールシールチューブ(青側:復路)から排液 をするためのチューブです。洗浄後のクール シール液を受ける排液バッグが付いています。
オスカプラーキャップ		2	洗浄作業中、クールシールユニットのカプラー た汚染から保護するためのキャップです
メスカプラーキャップ		2	でロホルの体験するにののイヤックです。

病院備品

備品	滅菌	数量	説明/用途
注射用水バッグ (100ml以上の物)		1	注射用水をクールシール液として使用します。
シリンジ (50ml、ロック付き)		2	注射用水をクールシール液流路に注入する際に 使用します。 ストレートロのシリンジを使用した場合は、採 液ポートバルブが破損し水漏れが発生する場合 があります。
酒精綿		適宜	清潔部位の消毒および注射用水バッグに針を刺 す際に使用します。
針		適宜	
作業台		1	
輸液セット		1	血液ポンプのクールシール液流路内に漏血を確
三方活栓		1	
点滴スタンド		1	

ſΞ

血液ポンプのクールシール液流路内に漏血を確認した場合、「4.1.3流路洗浄時の漏血の 対処方法」を参照してください。

流路洗浄を注射用水以外の溶液で行った場合には以下のように対処してください。

Note) • 生理食塩水の場合:100mlの流路洗浄を実施

• それ以外の溶液(ヘパリン加生理食塩水など)の場合:2Lの流路洗浄を実施

■ 清潔部位についての注意

以下の清潔部位には手を触れないでください。汚染の原因となります。汚染されたクールシール液が循環すると、患者が感染症にかかるおそれがあります。清潔部位を汚染してしまったおそれがあるときは、酒精綿できれいに拭くか、予備の部品・構成品と交換してください。

- 注射用水バッグのゴム栓
- シリンジの先
- クールシールユニットのメスカプラーおよびオスカプラーの接続部 (赤側・青側両方)

■定期点検■■■

5.4.1 コントローラの準備

- 1. 患者を仰臥位に寝かせます。
- 2. コントローラを作業台の上に置きます。
- 3. AC/DCアダプタをAC電源に接続します。
- **4.** AC/DC アダプタ接続部のキャップを外して、コネクタの赤い印を合わせて接続します。確認 音が鳴り、表示パネルのAC/DC 接続ランプが点灯します。
- 5. コントローラと外部モニタを接続し、外部モニタの電源を入れます。電源が立ち上がると、 Blood Pump Graph 画面が自動的に表示されます。
- **6.** レバーを矢印の方向にスライドさせ、コントローラのフタを開けます。開けるとディスプレイの表示が反転します。
- 操作パネルのクールシールボタンを3秒以上長押しして、クールシールシステムを停止させます。
 クールシールボタンのランプが消灯し、操作音が鳴ります。

5.4.2 クールシール流路洗浄キットの接続

- クールシール流路洗浄キットの滅菌パックのインディケータを確認します。また、滅菌パックが破れていたり、穴が開いていたりしないかも併せて確認します。
- 滅菌パックを開封し、クールシール流路洗浄キットを清潔野に出します。
- クールシール流路洗浄キットに破れ、穴、コネクタの破損などの損傷がないかどうかを確認します。

ここから無菌操作になります。 >>>>>>

4. 注射用水500ml を点滴スタンドに掛け、輸液セット、三方活栓を接続し充填します。

Note 血液ポンプのクールシール液流路内に漏血を確認した場合、4.で準備した注射用水を使用します。

- 5. シリンジ2本に、注射用水をそれぞれ50mlずつ充填します。
- **6** カプラーキャップを滅菌パックから取り出します。
- 7. クールシールチューブのカプラー(赤側)をクールシールユニットから外します。

外すときは、必ずカプラー(赤側)→カプラー(青側)の順で作業を行ってくださ Caution い。逆の順番で作業を行うと、カプラー(青側)からクールシール液が漏れます。 コントローラ内に入ると、故障したり、破損するおそれがあります。

- 8. 両方のカプラーにカプラーキャップを接続します。
- 9. カプラーキャップを滅菌パックから取り出します。

10.クールシールチューブのカプラー(青側)をクールシールユニットから外します。

- 11. 両方のカプラーにカプラーキャップを接続します。
- 12. 滅菌パックから洗浄チューブ(赤側)を取り出します。
- **13.** 洗浄チューブ (赤側) に1本目のシリンジを接続し、洗浄チューブのルート内をプライミング します。
- **14.** クールシールチューブのカプラー(赤側)のキャップを外し、洗浄チューブ(赤側)を接続 します。

5-26

15. クールシールチューブのカプラー(青側)のキャップを外し、排液チューブ(青側、排液バッ グ付)を接続します。

16. 排液バッグの三方活栓を閉めます。洗浄キットの組立は完了です。

定 5 点検

5.4.3 クールシール液流路の洗浄

- クールシール液流路洗浄手順においては、空気を送り込まないよう十分注意してください。 洗浄手順ではクールシールユニットを用いて循環しているときより水圧が高く、血液ポンプのメ カニカルシールが乖離して血液内に空気が混入するおそれがあります。
- **クールシール液流路洗浄手順においては、シリンジの押し子を引かないように注意してください。** 空気を吸い込み、その後陽圧を掛けたときなどに空気が大量に血液中に入る可能性があります。
 - シリンジのピストンをなるべく一定の速さで押し、10~20秒程度かかるように注射用水を流します。あまりにも時間がかかりすぎると、効果がありません。

正常状態においては、必ず 50ml のシリンジを使用してください。 30ml などの小さいサイズのシリンジを用いると、水圧が高くなり、メカニカルシールが大きく乖離する可能性が高まります。

- 2. 排液バッグ内にクールシール液が排液されていることを確認します。
- 3. 1本目のシリンジの注射用水すべてを流し終えたら、2本目のシリンジに交換します。
- 4. 手順1と同様にして2本目のシリンジ内の注射用水を流します。

5.4.4 クールシールシステムの再起動

1. 排液チューブ(青側)からクールシールチューブのカプラー(青側)を外します。

Caution
必ずカプラー(青側)を先にクールシールユニットに再接続してください。カプラー
(赤側)を先に接続すると水漏れの危険性があります。

- クールシールユニットのカプラー(青側)からカプラーキャップを外し、クールシールチュー ブのカプラー(青側)に接続します。
- 3. 洗浄チューブ(赤側)からクールシールチューブのカプラー(赤側)を外します。
- **4.** クールシールユニットのカプラー(赤側)からカプラーキャップを外し、クールシールチュー ブのカプラー(赤側)に接続します。

ここまで無菌操作です。 <<<<<<

- 操作パネルのクールシールボタンを押します。クールシールボタンランプが点灯し、操作音が鳴ります。
- 6. 必要に応じて、クールシールユニットのエア抜きと補液をします。
- 7. アラームがないことを確認して、コントローラのフタを閉めます。

5.5 非常用バッテリ交換

EVAHEARTシステムは交換式の非常用バッテリを使用しており、次のような場合に取り付け、取り外し、 交換を行います。

• コントローラ使用前に準備する場合 (取り付け)

初回使用時の非常用バッテリ取り付けについては、「3.2.2 コントローラへの非常用 バッテリの装着」を参照してください。

- 保管時など、 コントローラの電源を切る場合 (取り外しのみ)
- 非常用バッテリが故障した場合 (交換)
- 非常用バッテリの定期交換、予防交換時 (交換)

ここでは、非常用バッテリの交換手順について説明します。

非常用バッテリを交換する際は、コントローラに充電されたバッテリを2つ接続し、AC/DC アダプタをAC電源に接続して、電源を確保した状態で作業を行ってください。

5.5.1 古い非常用バッテリの取り外し

- 1. コントローラを安定した台の上に寝かせて置きます。
- 2. AC/DCアダプタがAC電源に接続され、AC電源で駆動していることを確認します。
- レバーを矢印の方向にスライドさせ、コントローラのフタを開けます。開けるとディスプレイの表示が反転します。
- 4. ケーブル固定バンドを緩めます。
- 5. コネクタカバーを外し、駆動ケーブルホルダから駆動ケーブルを取り出します。

Caution)非常用バッテリの交換の際に、駆動ケーブルを脱着しないでください。

6. 非常用バッテリの2箇所の固定ネジを、No.2プラスドライバで緩めます。ネジは非常用バッテリに付いたままです。

図5.15 固定ネジの取り外し

定 **5** 期_点検

- 非常用バッテリを静かに持ち上げ、コントローラの非常用バッテリ収納部から取り出します。
 コントローラに下記の表示が出ます。
 - ディスプレイにイベントコード"E-13"(非常用バッテリ未接続警告)が表示されます。
 - ピピッという音が15秒間隔で鳴ります。
 - 表示パネルのバッテリアラームランプが赤点滅します。

図5.16 非常用バッテリの取り外し

8. 非常用バッテリ収納部内が汚れている場合は、やわらかい布などで汚れを拭き取ります。

5.5.2 新しい非常用バッテリの装着

- 新しい非常用バッテリを、包装から取り出し、外観に亀裂、変色、変形がないかどうかを確認します。
- 2. 非常用バッテリのパッキンを確認し、浮きやねじれがある場合には直します。

■定期点検■■■

3. 非常用バッテリのコネクタと収納部のコネクタの位置を合わせて収納部に挿し込みます。

- 4. 非常用バッテリの2箇所の固定ネジを、No.2プラスドライバで締めます。
- 5. 非常用バッテリ上部の駆動ケーブルホルダに、駆動ケーブルを収め、コネクタカバーをかぶ せます。

6. AC/DC アダプタを外し、"E-11"(非常用バッテリ残量警告)および"E-13"(非常用バッテリ未接続警告)が発生しないことを確認します。

アラームが発生した場合は、次のように対処してください。

 Note
 E-11 : AC/DCアダプタを接続し、アラームが消えるまで充電してください。
 E-13 : 非常用バッテリを一度取り外し、再度挿し込んでください。

- 7. トップサイドケースのケーブル固定バンドで駆動ケーブルを留めます。
- 8. コントローラのフタを閉めます。

_ 定 5 点 検

<u>5.6</u> バックアップコントローラの点検

6ヶ月に1回を目安に、バックアップコントローラが正常駆動するかどうかの確認作業を行ってください。 バックアップコントローラの動作点検に必要なEVAHEARTシステム構成品は以下の通りです。

システム付属品

付属品	滅菌	数量	説明/用途
バックアップコントローラ		1	点検対象となるバックアップコントローラで す。
トレーニング用血液ポンプ		1	バックアップコントローラに接続し、動作を確 認します。
トレーニング用バッテリ		1	バックアップコントローラ接続し、動作を確認 します。満充電されたものを用意してください。

5.6.1 点検手順

- 1. バックアップコントローラのフタを取り外します。
- 2. バッテリ接続部Aに満充電のトレーニング用バッテリを接続します。
- バックアップコントローラの各ランプが以下の状態であることを確認します。 バッテリランプA:緑点灯 バッテリランプB:赤点滅 ポンプランプ:緑点滅
- 4. 血液ポンプを水の入った水槽に入れます。
- 5. 駆動ケーブル接続部とトレーニング用血液ポンプの駆動ケーブルコネクタの赤い印を合わせ て、接続します。
- 6. ポンプランプが緑点灯し、血液ポンプが正常に駆動していることを確認します。
- 7. バッテリ接続部Bに満充電のトレーニング用バッテリを接続します。
- 先に接続していた、バッテリ接続部Aのバッテリを取り外し、各ランプが以下の状態であることを確認します。
 バッテリランプA:赤点滅バッテリランプB:緑点灯
 ポンプランプ:緑点灯
- 9. 駆動ケーブルとバッテリを外し、バックアップコントローラのフタを取り付けます。

5.7 コントローラ交換

コントローラ交換は、通常2年に1回、定期点検の一環として行います。

また、以下のような緊急を要しないコントローラの異常が起こった際にも交換を行います。

- 患者の容態に問題はないが、 コントローラ交換を必要とするアラームが発生したとき
- 外装、 または各種接続部が破損したとき
- 予防交換を行うとき

Refer 緊急時のコントローラ交換については「4.3 緊急時のバックアップコントローラ交換」 を参照してください。

コントローラ交換は、医師の立ち会いの下に、医療従事者が行います。

コントローラ交換は、一般非常用電源、または瞬時特別非常用電源のAC電源が、少なくとも2つある場所で行ってください。

- コントローラ交換の際には血液ポンプ停止時間を最小限にするため速やかに行ってください。
- 患者が意識を失う場合に備えて、交換手順は患者が横になった状態で行ってください。
- コントローラ交換の際は、医師は必ずこの作業に立会い、血行動態を含む患者の健康状態に特別に 注意を払ってください。

 正常に使用できていても、定期点検のスケジュール通りに、コントローラおよびクールシールユニットの 交換を行ってください。

目に見えなくても、長い間の使用でシステムが劣化や磨耗しているおそれがあります。

 ・
 駆動ケーブルを収納する際には、キンク・ねじれやクールシールチューブとの交差がないようにしてください。

キンクやねじれが長時間続くと、駆動ケーブルに癖が付き断線しやすくなります。また、クール シールチューブがキンク・ねじれると、クールシール液の循環が正しく行われないおそれがあり ます。

- コントローラ交換時において、新コントローラの正常動作が確認されるまで、旧コントローラはそのままの状態にしておいてください。
- コントローラ交換時において、新コントローラに接続した際、万が一血液ポンプが再起動しない場合は、 駆動ケーブルを直ちに旧コントローラに接続し直します。予備のコントローラで交換手順をやり直してください。
- 一度使ったコントローラを他の人に使用しないでください。 コントローラに記録されるデータがどの患者のものか分からなくなり、混乱を招く可能性があり ます。

コントローラ交換に必要なEVAHEARTシステム構成品および付属品、病院備品は以下の通りです。

システム構成品および付属品

構成品	数量	説明/用途
コントローラ	1	交換用コントローラ(未使用品) あらかじめ非常用バッテリを装着し、コントローラ内蔵 時計の時刻合わせを行ってください。
ベンドリリーフ	1	交換用コントローラの付属品です。ポンプケーブルをコ ントローラに用定する際に使用します。
ケーブル固定アタッチメント	1	ノトローノに回たする际に使用しよす。
トップサイドケース	1	交換用コントローラの付属品です。ポンプケーブルを4本 の固定ネジでコントローラに固定します。
コネクタカバー	1	交換用コントローラの付属品です。 接続した駆動ケーブルの上にかぶせます。
血液ポンプボタンカバー	1	交換用コントローラの付属品です。 血液ポンプボタンの上に貼り付け、誤って操作されない ようにします。
バックアップコントローラ	1	不測の事態に備え、コントローラ交換の際は手元に準備 してください。
バッテリ	2	交換用コントローラに使用する満充電のバッテリ
AC/DCアダプタ	2	交換操作中の2台のコントローラ(使用しているコント ローラと交換用コントローラ)へ電力を供給します。
外部モニタ	1	コントローラ交換中にシステムをモニターします。
外部モニタ接続ケーブル	1	コントローラと外部モニタを接続します。

非常用バッテリを継続して使用する場合、コントローラや外部モニタに表示される使 用履歴がリセットされますので、ご注意ください。

病院備品

構成品	数量	説明/用途
作業台	1	コントローラ2台とクールシールユニットを置ける大き さが必要です。
No.2プラスドライバ	1	ベンドリリーフ固定ネジを緩める/締めるときに使用し ます。

	手順の中に、 旧コントローラと新コントローラという表現がありますが、	_
Note)	• 旧コントローラ→現在使用中のコントローラ	
	• 新コントローラ→交換用の未使用コントローラ を指しています。	

■定期点検■■■

定 **5** 期点検

■ コントローラ交換操作の流れ

コントローラ交換の主な操作の流れは以下の通りです。

の操作はできる限り速やかに行ってください。

5-35

5.7.1 新コントローラのセットアップ

以下の項の手順に従って、新コントローラのセットアップを行います。

- 「3.2.1使用予定構成品の外観確認」
- 「3.2.2コントローラへの非常用バッテリの装着」
- 「3.2.3コントローラのセットアップ」
- 「3.2.4外部モニタのセットアップとコントローラ内蔵時計の設定」

5.7.2 交換準備

- 1. コントローラが2台並べて置ける作業台の上に旧コントローラを置きます。
- 2. AC/DCアダプタをAC電源に接続します。
- 3. 旧コントローラにAC/DCアダプタを接続します。確認音が鳴り、表示パネルのAC/DC接続ラ ンプが点灯します。
- 4. 旧コントローラと外部モニタを接続し、外部モニタの電源を入れます。電源が立ち上がると、 Blood Pump Graph 画面が自動的に表示されます。

PRefer 外部モニタの接続と起動方法については「6.2 外部モニタの起動と終了」、「6.3 コントローラとの接続」を参照してください。

- 5. 旧コントローラのフタを開けます。
- 6. 駆動ケーブルを留めているケーブル固定バンドを緩めます。

5.7.3 医師の診察とパラメータの記録

- 1. 患者を横に寝かせ、医師は患者を診察し、血行動態を記録します。
- 2. 必要に応じて、EVAHEARTパラメータを記録します。
5.7.4 新コントローラの準備

1. 新コントローラを旧コントローラの手前に置き、フタを開けます。

- 2. 新コントローラにAC/DCアダプタ、満充電の2本のバッテリ、非常用バッテリが接続されていることを確認します。
- **3.** 外部モニタのController Configパネルから[Setting Copy]画面を開きます。

設定値や患者情報の移動方法については「6.8患者データの移動」を参照してください。

- 4. [Get Parameters]ボタンをタッチして、旧コントローラの設定値と患者情報を読み込みます。
- 5. 旧コントローラから外部モニタを取り外し、新コントローラに外部モニタを接続します。
- 6. [Set Parameters]ボタンをタッチして、新コントローラの設定値と患者情報を保存します。
- 7. [Clear Parameters]ボタンをタッチして、[Parameter List]の設定値と患者情報をクリアします。
- 8. Waveformパネルを開きます。

定 5 点 検

5.7.5 コントローラの交換

- コントローラ交換の際には血液ポンプ停止時間を最小限にするため速やかに行ってください。
- コントローラから駆動ケーブルを取り外す際には、コネクタのリリースグリップを持って、まっすぐに引き抜いてください。

無理矢理引っ張る、回す、ねじるなどの無理な力を加えるとコネクタや接続部が破損し、血液 ポンプに電力を供給できなくなるおそれがあります。

- 旧コントローラから駆動ケーブルを抜く前に、患者に血液ポンプが数秒停止すること、アラームが鳴るが心配いらないことを伝えます。
- 2. 駆動ケーブルを素早く確実に新コントローラに挿し替えることができるように、新旧コント ローラの準備が整っていることを確認します。
- 3. 新コントローラの血液ポンプボタンを押します。

■ Note 血液ポンプボタンを押すと、"E-20"、"E-22"、"E-32"などのアラームが発生してア ラーム音が鳴りますが、問題ありません。

4. 次の操作を、出来る限り素早く行います。
 ① 旧コントローラから駆動ケーブルのコネクタを抜き、
 ② 直ちに新コントローラに接続します(赤い印を合わせて挿し込む)。

図5.21 コントローラの交換

- 5. 患者の状態が良好であることを確認します。
- 6. 外部モニタに表示されたシステムの駆動状態を「5.7.3 医師の診察とパラメータの記録」で記録した旧コントローラのパラメータと比較できる状況であれば、異常がないことを確認します。

- 7. 新コントローラのアラームリセットボタンを3秒間長押しして、アラームを解除します。
- 8. 外部モニタを新コントローラから外し、旧コントローラに接続します。
- 9. 旧コントローラの操作パネルの血液ポンプボタンを3秒間長押して、血液ポンプを"OFF"にします。
- 10. 旧コントローラのアラームリセットボタンを3秒間長押しして、アラームを解除します。

5.7.6 クールシールユニットの移動

- 1. 旧コントローラのトップサイドケースの4つの固定ネジをNo.2プラスドライバで緩めます。
- 2. トップサイドケース、ベンドリリーフを持ち上げ、旧コントローラから取り外します。

- 旧コントローラの操作パネルのクールシールボタン3秒以上長押しして、クールシールシステムを停止させます。クールシールボタンランプが消灯し、操作音が鳴ります。
- 4. クールシールユニットを固定しているクリップを外します。
- 5. 旧コントローラからクールシールユニットを取り出し、ポンプケーブルと一緒に新コント ローラに移動します。
- 6. 新コントローラのクリップでクールシールユニットを固定します。
- **7.** 新コントローラの操作パネルのクールシールボタンを押します。クールシールボタンのラン プが点灯し、操作音が鳴ります。
- 8. 必要に応じて、古いベンドリリーフを外し、新しいベンドリリーフを取り付けます。

EVAHEART2(BP310)の場合、コントローラの接続抜け防止シートを外し、ケーブル固定アタッチメントを取りつけてください。

 コントローラのポンプケーブル収納部にポンプケーブルをはめ込み、ベンドリリーフを溝に セットします。

りールシールチューブにキンクや負荷がかかる場合には、位置をずらして調節して ください。

10. ベンドリリーフの溝に合わせるようにトップサイドケースを取り付け、No.2 プラスドライバ で4つのネジを均等に締めて固定します。

定 **5** 期点検

- 11. 駆動ケーブルコネクタを非常用バッテリ上部のホルダーに収め、コネクタカバーを取り付けます。
- **12.** 駆動ケーブルを軽く折り曲げ、トップサイドケースのケーブル固定バンドで留めて収納します。

13. 表示パネル、ディスプレイにアラームが発生していないことを確認します。

アラームが発生した場合は、「4.アラームとトラブルシューティング」を参照して対処 Caution してください。場合によっては、予備のコントローラを用意し、交換作業をやり直し てください。

14. 操作パネルの縁に合わせて、血液ポンプボタンカバーを貼り付けます。

5.7.7 医師の診察とシステムの動作確認

- 1. 外部モニタを旧コントローラから取り外し、新コントローラに接続します。
- 医師は、患者の状態と外部モニタに表示されているパラメータを確認します。必要に応じて 血液ポンプスピードを調節します。
- 外部モニタのController Config パネルを開き、最新の患者情報と流量推定が正しく入力されていることを確認します。
- 4. コントローラのフタを閉めます。
- 5. 新コントローラから外部モニタ接続ケーブルを取り外し、接続部のキャップを閉めます。

5.7.8 旧コントローラの使用終了

- 必要に応じて、旧コントローラに外部モニタを接続し、イベントデータ、トレンドデータを ダウンロードします。
- 2. 旧コントローラの非常用バッテリを、No.2プラスドライバで2箇所の固定ネジを緩めて取り外します。ネジは非常用バッテリに付いたままです。
- 3. 旧コントローラに接続されているバッテリをすべて取り外します。
- 4. 旧コントローラからAC/DCアダプタを取り外し、接続部のキャップを閉めます。
- 5. 旧コントローラのフタを閉めます。

5.8 システムの保管とメンテナンス

5.8.1 保管方法

EVAHEARTシステムの構成品や病院備品は、次に使用するまで適切に保管してください。

すべての構成品は「5.8.2環境条件」および「7.製品仕様」に示された保管条件に従って保管してください。

■ コントローラ

コントローラを保管する際には、非常用バッテリを取り外してください。

非常用バッテリは、No.2プラスドライバで2箇所の固定ネジを緩めて取り外します。ネジは非常用 バッテリに付いたままです。

■ 外部モニタ

外部モニタの電源をOFFにしてから、AC電源および外部モニタ接続ケーブルを外して保管してください。

■ バッテリ

満充電でない状態で保管条件に従って保管してください。

■ 充電器、AC/DCアダプタ

保管時はすべての接続(バッテリ、AC電源など)を外してください。

定 5 点 検

外部モニタの使い方

5.8.2 環境条件

本システムの保管環境条件および使用環境条件を遵守してください。
 仕様範囲外での保管環境および使用環境では、本システムの品質保証ができません。

極端な温度、湿度下、また直射日光の当たる場所では本システム構成品を使用/保管しないでください。本システムの使用環境条件および保管環境条件は以下の通りです。ただし、保管環境は提供状態 での保管環境条件です。

■ 使用環境条件

構成品	温度	湿度
コントローラ	-5~45℃	5~95%RH
バックアップコントローラ	-5∼45℃	$5{\sim}95\%$ RH
クールシールユニット	-5~45℃	5~95%RH
バッテリ	-5~45℃ (充電時:5~45℃)	5~95%RH
非常用バッテリ	-5 \sim 45 $^\circ \mathrm{C}$	5~95%RH
充電器	5~45℃	25~85%RH
AC/DCアダプタ	0∼50°C	30~75%RH
外部モニタ	0∼35℃	5~85%RH

■ 保管環境条件

構成品	温度	湿度
血液ポンプユニット	-5∼45℃	5~95%RH
インフローカニューレ	-5~45℃	$5{\sim}95\%$ RH
アウトフローグラフト	-5~45℃	$5{\sim}95\%$ RH
コントローラ	-5~45℃	$5{\sim}95\%$ RH
バックアップコントローラ	-5~45℃	$5{\sim}95\%$ RH
クールシールユニット	-5~45℃	5~95%RH
クールシール流路洗浄キット	-5~45℃	5~95%RH
バッテリ	0∼30°C	5~95%RH
非常用バッテリ	0∼30°C	5~95%RH
充電器	-20∼60℃	10~90%RH
AC/DCアダプタ	-20∼60℃	0~95%RH
外部モニタ	-20∼60℃	$5{\sim}85\%$ RH
外部モニタ接続ケーブル	-20∼60°C	5~95%RH
手術用具	-5∼45℃	5~95%RH

5.8.3 保管中の定期点検

構成品が使用可能な状態にあり、適切に作動することを確認するために、保管中の場合でも定期点検 を行ってください。構成品が正常動作をしない場合や、操作パラメータから外れる場合には、直ちに サンメディカル技術研究所テクニカルサポートまでご連絡ください。

「2.体外構成品の機能チェック」のチェック内容に従って、定期点検を行ってください。

メーカーが推奨する定期点検のスケジュールは以下の通りです。

各医療機関の方針や医療従事者の判断により、より頻繁に定期点検を行っていただいても構いません。

本システムの定期点検概要

上怜宿口	スケジュール		
后,	患者使用前までに	6ヶ月毎	1年毎
植込み構成品、手術用具の外観検査	٠		
電気的安全性の確認			•
コントローラ • 機能チェック	•	•	
バックアップコントローラ • 機能チェック	•	•	
外部モニタ ● 機能チェック	•	•	
バッテリ ● 機能チェック	•	•	
充電器 ● 機能チェック	•		•
AC/DC アダプタ • 機能チェック	•		•

■ 定期交換部品および保守部品の保有期間について

本製品(体外構成品)製造終了後における定期交換品および保守部品の保有期間は5年とさせていただきます。但し、保守部品の一部には一般市販品も含まれており、販売から長期間経過した部品が製造中止等により保有期間内においても入手できなくなる可能性があります。その場合は例外とさせていただきますので、あらかじめご了承ください。

定 **5** 期点検

EVAHEART LVAS

6. 外部モニタの使い方

6.1	外部モニタ各部の名称と基本的な使い方	
	6.1.1 各部の名称(外部モニタ 1)	6-2
	6.1.2 各部の名称(外部モニタ 2)	6-4
	6.1.3 画面の操作(外部モニタ1のみ)	6-4
	6.1.4 バッテリの使用	6-5
6.2	外部モニタの起動と終了	
		6.6
	0.2.1 外部モニタの起動	0-0 6 6
6.3	コントローラとの接続	6-6
6.4	各画面の説明	6-7
	6.4.1 Waveform パネル	6-8
	6.4.2 Data Logs パネル	6-12
	6.4.3 Controller Config パネル	6-17
	6.4.4 Software Info パネル	6-27
	6.4.5 Key Pad 画面	6-28
6.5	外部モニタの時刻設定	
6.6	流量推定機能の使い方	6-30
	6.6.1 オフセットデータの入力	
	6.6.2 流量推定の更新	
67	トレンドデーターイベントデータ撮作	6.22
0.7		0-33
	6.7.1 トレンドデータ、イベントデータを取得する	6-33
	6.7.2 トレンドデータ、イベントデータを読み込む	6-35
	6.7.3 USB メモリから取り込む、USB メモリへ保存する	6-37
	6.7.4 データを削除する	6-38
6.8	患者データの移動	6-40
6.9	パスワードについて	

製 **7** 品仕 様 外部モニタは、本システムの患者への植込み時や、血液ポンプ状態の観察、システムの保守点検などを 行う際に、医師や医療従事者が使用します。

ここでは、外部モニタの操作方法、コントローラとの接続方法およびソフトウェアの各画面と操作方法 について説明します。

図6.1 外部モニタ(上面、正面)

6.1.2 各部の名称(外部モニタ2)

図6.5 外部モニタ2 (背面・下面)

(9) LANコネクタ

6.1.3 画面の操作(外部モニタ1のみ)

外部モニタの入力装置には、以下のものがあります。

■ スタイラスペン

スタイラスペンは外部モニタの左側に収納されており、スタイラスペン取り出しボタンを押して取り出します。外部モニタでは、基本的にスタイラスペンを使用して画面を操作します。指先やボールペンなどを使用すると画面を傷つける可能性があります。

■ トラックポインタ

スタイラスペンの代わりに、トラックポインタを使用することもできます。

	左クリック	:トラックポインタボタン(①)を押します。
2	カーソルの移動	:移動したい方向に、トラックポインタスティック(②)を押します。
	右クリック	:トラックポインタボタン(③)を押します。

6.1.4 バッテリの使用

■ バッテリ駆動

●外部モニタ1

バッテリによる動作は満充電時で1時間以上可能です。ただし、使用環境、劣化等の様々な要因により変動します。長い期間使用されない場合、バッテリが自然放電されますので、2ヶ月に1度は 充電してください。

●外部モニタ2

バッテリによる動作は満充電時で30分以上可能です。ただし、使用環境、劣化等の様々な要因により変動します。バッテリが自然放電されますので、2ヶ月に1度は充電してください。

持ち運び時の使用時間を延長するためにモバイルバッテリを使用できます。 モバイルバッテリは出力DC19V、1.5A以上の製品を使用してください。アダプタコ ネクタの仕様を合わせて使用してください。

■ バッテリの残量確認

●外部モニタ1

外部モニタ画面右上のバッテリランプで残量を確認できます。バッテリの状態をランプの色で示します。

緑点灯:6%以上残量あり

緑点滅:バッテリ残量が6%未満

赤点滅:バッテリ残量が3%未満

橙点灯:充電中

●外部モニタ2

残量確認ランプがないのでご注意ください。

■ バッテリの充電

●外部モニタ1

- **1** 外部モニタのアダプタコネクタに外部モニタ用ACアダプタを接続します。
- 2. 外部モニタ用ACアダプタをAC電源に接続します。
- 3. 充電ランプが橙点灯していることを確認します。充電が完了するとランプが緑に点灯します。
 ●外部モニタ2
- **1** 外部モニタのアダプタコネクタに外部モニタ用ACアダプタを接続します。
- 2. 外部モニタ用ACアダプタをAC電源に接続します。

■ バッテリの充電時間

●外部モニタ1

バッテリの充電時間は、外部モニタの電源が入っていない状態で約3時間です。電源が入っている 場合は、最大4時間かかります。初めて外部モニタを使用する際には少なくとも5時間は充電して ください。

●外部モニタ2

バッテリの充電時間は、外部モニタの電源が入っていない状態で約3時間です。

外部モニタの使い方

6.2 外部モニタの起動と終了

6.2.1 外部モニタの起動

- 1. 外部モニタのアダプタコネクタに外部モニタ用ACアダプタを接続します。
- 2. 外部モニタ用ACアダプタをAC電源に接続します。
- 3. 外部モニタの電源ボタンを押します。電源が立ち上がると、Blood Pump Graph 画面が自動的 に表示されます。

6.2.2 外部モニタの終了

- データの保存、外部メモリへの読み込み・書き込みなどの作業が終了していることを確認します。
- 2. 外部モニタの電源ボタンを押します。自動的にソフトウェアが終了し、電源が切れます。
- 3. 外部モニタ用ACアダプタを外部モニタおよびAC電源から取り外します。

6.3 コントローラとの接続

1. 外部モニタを起動します。

🕝 Refer) 起動方法については、「6.2 外部モニタの起動と終了」を参照してください。

コントローラの外部モニタ接続部のキャップを外し、外部モニタ接続ケーブルの赤い印を合わせて接続します。

図6.6 外部モニタの接続

- 3. 外部モニタ接続ケーブルを外部モニタのUSBポートに接続します。
- **4.** 外部モニタとコントローラの通信が始まると、画面上部のPatient IDとPODの値が表示されます。

6.4 各画面の説明

■ 外部モニタ構成

パネル	画面	機能
Waveform	Blood Pump Graph	現在の血液ポンプのスピード、消費電力、流量推定 を表示します。
	CSU Graph	現在のクールシール圧(FPin、FPout の値)を表示 します。
Data Logs	Data Selection	確認するトレンドデータ、イベントデータを選択で きます。
	Trend Data	"Data Selection" で選択したトレンドデータを表示 します。
	Event Data	"Data Selection" で選択したイベントデータを表示 します。
Controller Config	Device Info	接続されている製品の使用状況やシリアルナンバー を表示します。
	Patient Info	患者情報の入力と表示をします。
	Clock	コントローラの時刻設定します。
	Blood Pump	血液ポンプスピードを変更します。
	CSU	クールシール圧の設定を変更します。
	Flow Estim	流量推定パラメータを入力します。
	Setting Copy	コントローラ交換時に設定値と患者情報を移動しま す。
Software Info		ソフトウェアバージョンと HDD の容量を表示しま す。

■ 全画面の共通項

名称	機能説明
現在日時	外部モニタの現在日時(yyyy/mm/dd HH:MM:SS)が表示されます。
[Patient ID]	接続されているコントローラの患者IDが表示されます。
[POD]	接続されているコントローラの患者の術後経過日数が表示されます。

6.4.1 Waveformパネル

外部モニタが起動すると、最初に表示される画面です。このパネルではシステムの動作状態を表示します。外部モニタにコントローラが接続されると自動的に波形が表示されます。

画面上のタブをタッチすると、Blood Pump Graph 画面、CSU Graph 画面に切り替えることができます。また、画面下のボタンをタッチすると、Data Logs パネル、Controller Config パネル、Software Info パネルに切り替えることができます。

■ Blood Pump Graph画面

Waveformパネルで [Blood Pump Graph] タブをタッチすると表示されます。

血液ポンプのスピード(rpm)、血液ポンプの消費電力(W)、流量推定値(L/min)およびイベント が表示されます。

図6.7 Blood Pump Graph 画面

	名称	機能説明
1	[Pump Speed]	血液ポンプのスピード(rpm)が、グラフと数値で表示されます。 数値は5秒平均の値が表示されます。
2	[Pump Power]	血液ポンプの消費電力(W)が、グラフと数値で表示されます。 数値は5秒平均の値が表示されます。
3	[Pump Flow (Estimated)]	血液ポンプの流量推定が、グラフと数値で表示されます。 数値は5秒平均の値が表示されます。 ただし、推定値が2L/min以下または10L/min以上、消費電力が7W以上の ときN/Aと表示されます。
		Controller Config パネルの Flow Estim 画面でオフセットデータを入力して [Start Estimation] ボタンを押すと、血液ポンプのスピード、消費電力、血 液データから血液ポンプの流量を推定し、グラフと数値が表示されます。 『Refer オフセットデータの入力方法については「6.6 流量推定機能の使い方」 を参照してください。
4	リアルタイム イベントリスト	イベントデータが以下の項目で古いものから一覧表示されます。 • イベント発生日時 (yyyy/mm/dd HH:MM:SS) • イベントコード • イベントの簡単な説明 右側のスクロールバーまたは [▲] / [▼] ボタンをタッチすると、リスト 表示を上下に移動できます。
5	[Record Data] ボタン	タッチすると、ボタンの表示は [Stop Record] に変わり、ランプが緑に なり、リアルタイムデータを20ms毎に保存します。 [Stop Record] ボタンをタッチすると、[Record Data] に変わり、データ の保存を停止します。
6	P.F. ldx.	数値は5秒平均の値(L/min/m ²)が表示されます。 Controller ConfigパネルのPatient Info画面で入力された患者の身長及び体 重から体表面積(BSA)を自動的に計算し、そこで得た体表面積と血液 ポンプの流量推定値を用いて、ポンプフローインデックスを計算して表示 します。
	BSA	Controller ConfigパネルのPatient Info画面で入力された患者の身長及び体重から体表面積を計算します。
	FPin	数値は5秒平均のクールシールライン(FPin)の圧力値が表示されます。
	FPout	数値は5秒平均のクールシールライン(FPout)の圧力値が表示されます。

■ CSU Graph 画面

Waveformパネルで [CSU Graph] タブをタッチすると表示されます。

クールシールユニットのFPin 圧力(kPa)、FPout 圧力(kPa)およびイベントが表示されます。

	名称	機能説明
1	[CSU FPin]	クールシールユニットのFPinの圧力(kPa)が、グラフと数値で表示され ます。数値は5秒平均の値が表示されます。
2	[CSU FPout]	クールシールユニットの FPout の圧力(kPa)が、グラフと数値で表示されます。数値は5秒平均の値が表示されます。
3	リアルタイム イベントリスト	イベントデータが以下の項目で古いものから一覧表示されます。 • イベント発生日時 (yyyy/mm/dd HH:MM:SS) • イベントコード • イベントの簡単な説明 右側のスクロールバーまたは [▲] / [▼] ボタンをタッチすると、リスト 表示を上下に移動できます。
4	[Record Data] ボタン	タッチすると、ボタンの表示は[Stop Record]に変わり、ランプが緑になり、リアルタイムデータを20ms毎に保存します。 [Stop Record] ボタンをタッチすると、[Record Data]に変わり、データの保存を停止します。
5	Delta P	数値は5秒平均のクールシールユニットのDelta P(FPin - FPoutの差圧を 計算した値)が表示されます。
	CS Speed	数値は5秒平均のクールシールユニットのダイアフラムポンプスピード (krpm)が表示されます。
	CS Power	数値は5秒平均のクールシールユニットの消費電力(W)が表示されます。
	BP Speed	数値は5秒平均の血液ポンプのスピード(rpm)が表示されます。
	BP Power	数値は5秒平均の血液ポンプの消費電力(W)が表示されます。

外部モニタの使い方

製**7** 日 仕様

6.4.2 Data Logsパネル

画面下の [Data Logs] ボタンをタッチすると表示されます。

トレンドデータとイベントデータの表示とファイルの管理を行います。

画面上のタブをタッチすると、Data Selection 画面、Trend Data 画面、Event Data 画面に切り替える ことができます。

■ Data Selection 画面

Data Logsパネルで [Data Selection] タブをタッチすると表示されます。

Patient ID とトレンドデータ、イベントデータおよびリアルタイムデータの計測期間が一覧で表示 されます。トレンドデータとイベントデータを読み込むと、Trend Data 画面および Event Data 画 面でデータを確認できます。

Note コントローラが接続されているときは、そのコントローラの持つPatient IDと異なるPatient IDは表示されません。

図6.9 Data Selection 画面

1	

	r -
_	
	1.1
・備と操作	
	_
	2
	2
	2
	_
	_
	_
	2
	2
	2
	2
	2
	2
	_
	_

	名称	機能説明
1	[Selected Data]	[Patient ID] リストから選択されたデータのIDとデータの計測期間が表示 されます。
2	[Select Data to Review] ボタン	タッチすると [Selected Data] に選択されているデータが、Trend Data画面とEvent Data画面のグラフとリストで表示されます。 「Refer トレンドデータとイベントデータの読み込み方法については「6.7.2 トレンドデータ、イベントデータを読み込む」を参照してください。
3	[Patient ID]	左の表示欄に外部モニタに保存されているID、右の表示欄に選択したIDの トレンドデータとイベントデータ(Tr/Ev)、リアルタイムデータ(Rt)お よびデータ計測期間が一覧で表示されます。 データー覧には、以下の項目が表示されます。 ・通し番号 ・データ種別(Tr/Ev、Rt) ・データ計測期間(yyyy/mm/dd HH:MM:SS - yyyy/mm/dd HH:MM:SS)
4	[Import to Monitor] ボタン	タッチすると、USBメモリからデータファイルを取り込みます。 「「Refer データの取り込み方法については「6.7.3 USBメモリから取り込む、 USBメモリへ保存する」を参照してください。
5	[Export from Monitor] ボタン	タッチすると、[Patient ID]の下の左表示欄で選択されている患者のデー タを、USBメモリへ保存します。 『 『 Refer データの保存方法については「6.7.3 USBメモリから取り込む、USBメ モリへ保存する」を参照してください。
6	[Delete Data] ボタン	タッチすると、[Patient ID]の下の右表示欄で選択されているデータを削除します。 「「「「「」」「「」」の下の右表示欄で選択されているデータを削除します。 「「」」では「6.7.4 データを削除する」を参照してく ださい。
7	[Download from Controller] ボタン	タッチすると、コントローラに記録されているトレンドデータとイベント データをダウンロードします。 「『Refer データのダウンロード方法については「6.7.1 トレンドデータ、イベント データを取得する」を参照してください。

■ Trend Data 画面

Data Logsパネルで [Trend Data] タブをタッチすると表示されます。

Data Selection 画面で選択したトレンドデータ(血液ポンプのスピード、消費電力、クールシール ユニットのFPout 圧力値、Delta P 圧力値)が表示されます。

図6.10 Trend Data 画面

	名称	機能説明
1	[Patient ID]	Data Selection 画面の [Patient ID] リストから選択されたデータのIDが表示されます。
2	[Data range]	Data Selection画面の [Patient ID] リストから選択されたデータの計測期 間が表示されます。
3	[Pump Speed]	血液ポンプのスピードがグラフで表示されます。
4	[Pump Power]	血液ポンプの消費電力がグラフで表示されます。
5	[CSU FPout]	クールシールユニットのFPoutの計測値がグラフで表示されます。
6	[CSU Delta P]	クールシールユニットのDelta P(FPin - FPoutの差圧を計算した値)がグ ラフで表示されます。
7	[Cursor]	グラフ上の任意の位置をタッチすると、グラフ内のカーソル(紫色の縦線) の位置を移動することができ、下記の値を表示します。 - 日時 - 血液ポンプとクールシールユニットのスピード - 血液ポンプとクールシールユニットの消費電力 - クールシールユニットのFPin、FPout、Delta Pの圧力 - コントローラの温度

名称	機能説明
[]/] ボタン	タッチすると、グラフ内のカーソルの位置を左右に移動します。
M / 🚺 ボタン	タッチすると、グラフ表示を1画面分左右に移動します。
∫	タッチすると、グラフ表示を拡大/縮小します。 120日、60日、30日、14日、7日、3日、1日と表示範囲を拡大/縮小できます。 初期値は60日です。

製**7** 日 仕様

■ Event Data 画面

Data Logsパネルで[Event Data] タブをタッチすると表示されます。 Data Selection 画面で選択したイベントデータが表示されます。

図6.11 Event Data 画面

	名称	機能説明
1	[Patient ID]	Data Selection画面の [Patient ID] リストから選択されたデータのIDが表示されます。
2	[Data range]	Data Selection画面の [Patient ID] リストから選択されたデータの計測期 間が表示されます。
3	リスト表示欄	 イベントデータが以下の項目で一覧表示されます。 通し番号 イベント発生日時(yyyy/mm/dd HH:MM:SS) イベントコード イベントス件 Det: イベントの発生 Clr: イベントのクリア 赤字: アラームの発生 青字: アラームのクリア 黒字: ログデータ イベントの簡単な説明 イベントコードの詳細については「4.1トラブルシューティング」を参照してください。
4	[All Events] ボタン	タッチすると、ランプが点灯し、データ選択期間中のすべてのイベント データとログデータが表示されます。スクロールバーまたは〔▲〕/〔▼〕 ボタンをタッチすると、リスト表示を上下に移動できます。 [Alarm Only]ボタンをタッチすると、ランプは消灯します。
5	[Alarm Only] ボタン	タッチすると、ランプが点灯し、データ選択期間中のログデータを除いた イベントデータが表示されます。スクロールバーまたは〔▲〕/〔▼〕ボタ ンをタッチすると、リスト表示を上下に移動できます。 [All Events]ボタンをタッチすると、ランプは消灯します。

6.4.3 Controller Configパネル

画面下の [Controller Config] ボタンをタッチすると表示されます。

パスワードを入力すると、コントローラの構成の表示と設定を行うことができます。

画面上のタブをタッチすると、Device Info 画面、Patient Info 画面、Clock 画面、Blood Pump 画面、 CSU 画面、Flow Estim 画面、Setting Copy 画面に切り替えることができます。

Refer) パスワードの詳細については「6.9 パスワードについて」を参照してください。

■ Device Info画面

Controller Configパネルで [Device Info] タブをタッチすると表示されます。

[Usage History] ではコントローラ、クールシールユニット、バッテリ、非常用バッテリの使用履 歴が表示されます。

[Serial Number] では血液ポンプ、コントローラ、クールシールユニット、バッテリ、非常用バッテリのシリアルナンバーが表示されます。また、血液ポンプのシリアルナンバーの設定を行います。

外部モニタの使い方

	名称	機能説明
1	[Controller]	コントローラの使用経過日数が表示されます。
2	[CSU]	クールシールユニットの使用経過日数が表示されます。
3	[External Battery 1]	バッテリ1に接続されているバッテリの充放電回数が表示されます。 ^{● №™} 新品のバッテリでも検査等によって数回の充放電回数の履歴が表 示される場合があります。
4	[External Battery 2]	バッテリ2に接続されているバッテリの充放電回数が表示されます。 ● №№ 新品のバッテリでも検査等によって数回の充放電回数の履歴が表示される場合があります。
5	[Emergency Battery]	非常用バッテリの使用経過日数が表示されます。
6	[Blood Pump]	 血液ポンプのシリアルナンバーを入力します。入力形式は、「BPxxx-xxxx」です。シリアルナンバーの桁数が合わない場合は、先頭に0をつけて入力してください。 シリアルナンバーを変更する場合は、表示欄をタッチして表示されるキーパッドから入力し、[Set] ボタンをタッチします。確認メッセージ画面が表示されますので、[OK] ボタンをタッチしてください。 Fefer キーパッドの詳細については「6.4.5 Key Pad画面」を参照してください。
7	[Controller]	コントローラのシリアルナンバーが表示されます。
8	[CSU]	クールシールユニットのシリアルナンバーが表示されます。
9	[External Battery 1]	バッテリ1に接続されているバッテリのシリアルナンバーが表示されま す。
10	[External Battery 2]	バッテリ2に接続されているバッテリのシリアルナンバーが表示されま す。
(1)	[Emergency Battery]	非常用バッテリのシリアルナンバーが表示されます。
(12)	[Password]	パスワードを入力します。入力欄をタッチして表示されるキーパッドから 入力してください。パスワードを入力しないと Controller Config パネルで 表示・設定変更ができません。
(13)	[Clear] ボタン	タッチすると、入力されたパスワードがクリアされます。パスワードをク リアするとController Configパネルで表示・設定変更ができません。

■ Patient Info 画面

Controller Configパネルで [Patient Info] タブをタッチすると表示されます。 患者情報(患者ID、年齢、性別、身長、体重、植込み日)の表示と登録を行います。

	名称	機能説明
1	[Patient ID]	患者 ID を入力します。入力できる文字は半角英数字 16 文字までです。スペース、アポストロフィー(') は入力できません。表示欄をタッチして表示されるキーパッドから入力してください。
2	[Age]	患者の年齢を入力します。表示欄をタッチして表示されるキーパッドから 入力してください。
3	[Sex]	患者の性別を入力します。表示欄をタッチするたびに表示が切り替わりま す。「Male」(男性)または「Female」(女性)を選択してください。
4	[Height]	患者の身長 (cm) を入力します。表示欄をタッチして表示されるキーパッドから入力してください。
5	[Weight]	患者の体重(kg)を入力します。表示欄をタッチして表示されるキーパッドから入力してください。
6	[Implant Date]	血液ポンプの植込み日(年月日)を入力します。表示欄をタッチして表示 されるキーパッドから入力してください。入力形式は「yyyy/mm/dd」です。

	名称	機能説明
7	[Save to Controller] ボタン	タッチすると、入力した患者情報を登録します。トレンド/イベント/リア ルタイムデータを保存するフォルダ名にはPatient IDが使われます。
8	[Password]	パスワードを入力します。入力欄をタッチして表示されるキーパッドから 入力してください。パスワードを入力しないと Controller Config パネルで 表示・設定変更ができません。
9	[Clear] ボタン	タッチすると、入力されたパスワードがクリアされます。パスワードをクリアするとController Configパネルで表示・設定変更ができません。

■ Clock画面

Note)

Controller Configパネルで [Clock] タブをタッチすると表示されます。

コントローラと外部モニタの時刻設定を行います。コントローラを使用する前に、必ず外部モニタ の時刻合わせを行ってください。

コントローラの電源を入れてから10分以上時刻設定を行わないと、トレンドデータに

時刻設定後、[Monitor Clock]と[Controller Clock]の表示が多少ずれますが、問題ありません。

図6.14 Clock画面

	名称	機能説明
1	[Monitor Clock]	外部モニタの現在日時が表示されます。必要に応じて、表示欄をタッチして日時とタイムゾーンを設定してください。 ● Note 外部モニタをご使用になるときやコントローラの時刻設定を行う前に、必ず外部モニタの現在日時を確認してください。
2	[Sync] ボタン	タッチすると、外部モニタの現在日時がコントローラに転送され、コント ローラの時刻が修正されます。
3	[Controller Clock]	コントローラから読み込んだ日時が表示されます。
4	[Password]	4 文字のパスワードを入力します。入力欄をタッチして表示されるキー パッドから入力してください。パスワードを入力しないと Controller Configパネルで表示・設定変更ができません。
5	[Clear] ボタン	タッチすると、入力されたパスワードがクリアされます。パスワードをク リアするとController Configパネルで表示・設定変更ができません。

■ Blood Pump画面

Controller Configパネルで [Blood Pump] タブをタッチすると表示されます。 血液ポンプスピードの設定表示と変更を行います。

図6.15 Blood Pump画面

	名称	機能説明
1	[Set Speed]	コントローラに設定されている血液ポンプスピードが表示されます。
2		ボタンをタッチして、血液ポンプスピードの設定値を変更します。
3	[Password]	パスワードを入力します。入力欄をタッチして表示されるキーパッドから 入力してください。パスワードを入力しないと Controller Config パネルで 表示・設定変更ができません。
4	[Clear] ボタン	タッチすると、入力されたパスワードがクリアされます。パスワードをク リアするとController Configパネルで表示・設定変更ができません。

■ CSU画面

Controller Configパネルで [CSU] タブをタッチすると表示されます。 クールシール圧 (FPout)の設定表示と変更を行います。

	名称	機能説明
1	[Set FPout]	コントローラに設定されているクールシール圧が表示されます。
Q		ボタンをタッチして、クールシール圧の設定値を変更します。
3	[Password]	パスワードを入力します。入力欄をタッチして表示されるキーパッドから 入力してください。パスワードを入力しないと Controller Config パネルで 表示・設定変更ができません。
4	[Clear] ボタン	タッチすると、入力されたパスワードがクリアされます。パスワードをク リアするとController Configパネルで表示・設定変更ができません。

体外構成品の機能チェック

■ Flow Estim画面

Controller Configパネルで [Flow Estim] タブをタッチすると表示されます。 流量推定に必要なオフセットデータを入力します。

図6.17 Flow Estim画面

	名称	機能説明
1	[Current HCT]	流量推定に必要な患者の最新ヘマトクリット値を入力します。表示欄を タッチして表示されるキーパッドから入力してください。
2	[Offset Power]	ポンプ血流量計測時の消費電力を入力します。[Get Offset Data] ボタンを 押すと自動的に入力されます。また、表示欄をタッチして表示されるキー パッドから修正できます。
3	[Offset Speed]	ポンプ血流量計測時の血液ポンプスピードを入力します。[Get Offset Data] ボタンを押すと自動的に入力されます。また、表示欄をタッチして表示されるキーパッドから修正できます。
4	[Offset HCT]	ポンプ血流量計測時のヘマトクリット値を入力します。表示欄をタッチし て表示されるキーパッドから入力してください。
5	[Actual Flow]	ポンプ血流量を計測して入力します。表示欄をタッチして表示されるキー パッドから入力してください。

■外部モニタの使い方■■■

	名称	機能説明
6	[Start Estimation] ボタン	タッチすると、ランプが点灯し、WaveformパネルのBlood Pump Graph画 面の [Pump Flow (Estimated)] (流量推定)表示が有効になります。 下記のような場合、流量推定が無効となり、ランプは消灯します。 • [Stop Estimation]ボタンをタッチした • コントローラが接続されていない • 入力したデータが無効である • 血液ポンプのスピードまたは消費電力が正常範囲内ではない
$\widehat{\mathcal{O}}$	[Get Offset Data] ボタン	タッチすると、血液ポンプのスピードと消費電力を計測し、5 秒間の平均 データを[Offset Power]と[Offset Speed]欄に入力します。
8	[Save to Controller] ボタン	タッチすると、入力した内容がコントローラに保存されます。
9	[Password]	パスワードを入力します。入力欄をタッチして表示されるキーパッドから 入力してください。パスワードを入力しないと Controller Config パネルで 表示・設定変更ができません。
(10)	[Clear] ボタン	タッチすると、入力されたパスワードがクリアされます。パスワードをク リアするとController Configパネルで表示・設定変更ができません。

■ Setting Copy画面

Controller Config パネルで [Setting Copy] タブをタッチすると表示されます。

コントローラの交換時に、旧コントローラに設定されている設定値や患者情報を新コントローラに 保存します。

図6.18 Setting Copy 画面

	名称	機能説明
1	[Parameter List]	読み込んだ設定値や患者情報を表示します。
2	[Get Parameters] ボタン	タッチすると、接続されているコントローラから設定値や患者情報を読み 込みます。
3	[Set Parameters] ボタン	タッチすると、[Parameter List]に表示されている設定値や患者情報を接続 されているコントローラに保存します。
4	[Clear Parameters] ボタン	タッチすると、[Parameter List]に表示されている設定値や患者情報をクリアします。
5	[Password]	パスワードを入力します。入力欄をタッチして表示されるキーパッドから 入力してください。パスワードを入力しないと Controller Config パネルで 表示・設定変更ができません。
6	[Clear] ボタン	タッチすると、入力されたパスワードがクリアされます。パスワードをクリアするとController Configパネルで表示・設定変更ができません。

6.4.4 Software Infoパネル

画面下の[Software Info]ボタンをタッチすると表示されます。 ソフトウェアのバージョンとHDDの容量と残量が表示されます。

図6.19 Software Infoパネル

6.4.5 Key Pad 画面

Controller Config パネルなどで文字や数値を入力する場合、入力欄をタッチすると、入力欄に入力できる文字種によって、Key Pad A画面またはKey Pad B画面が表示されます。

キーをタッチして文字を入力し、[Enter]キーをタッチして入力を確定します。

■ Key Pad A画面

図6.20 Key Pad A (キーボード型) とKey Pad B (10キー型) 画面

	名称	機能説明
1	[Cancel] キー	タッチすると、編集中の入力内容をクリアし、編集前の状態に戻しKey Pad 画面を閉じます。
2	[Back space] キー	タッチすると、カーソルの位置の左1文字を削除します。
3	[Space] キー	タッチすると、スペースを1文字入力します。Key Pad Aにしかありません。
4	[Enter] +-	タッチすると、入力した内容を確定します。入力したデータの値が正常範 囲外の場合、エラーメッセージが表示されます。もう一度確認してから入 力し直してください。
6.5 外部モニタの時刻設定

外部モニタを使用する際には、必ず時刻設定を確認してください。

- 1. Contorller Configパネルの [Clock] タブをタッチしClock画面を表示します。
- 2. [Password] 欄をタッチして表示されるKey Pad Bからパスワードを入力します。

🕝 Refer)キーパッドの詳細については「6.4.5 Key Pad画面」を参照してください。

3. [Monitor Clock] の表示が現在日時とずれている場合、[Monitor Clock] 欄をタッチして外部 モニタのDate and Time Properties 画面を表示します。

Date	e and	Tim	e Pr	oper	ties			? 🔀
Da	ate &	Time	Tir	ne Zo	one	Inte	ernet Tin	ie
l c	Date							Time
	Aug	ust	•	• 2	2011		×	
	S	М	Т	W	Т	F	S	
		1	2	3	4	5	6	
	7	8	9	10	11	12	13	
	14	15	16	17	18	19	20	
	21	22	23	24	25	26	27	
	28	29	30	31				
								4:01:40PM 📚
0	urren	t time	e zon	e: T	okyo	Star	ndard Tir	ne
							OK	Cancel Apply

図 6.21 Date and Time Properties 画面

4. Date and Time Properties 画面で、タイムゾーンを設定しタッチします。

外部モニタ2の時刻設定する場合、入力欄を長押しすると、ソフトウェアキーボード を使用しすることができます。

図6.22 ソフトウェアキーボード

- 5. 該当するタイムゾーンを設定します。「OK」ボタンをタッチします。
- 6. [Monitor Clock] の時刻にコントローラの時刻を合わせる場合、[Sync] ボタンを押し、同期します。
- **7.** [Clear] ボタンをタッチして、パスワードをクリアします。

6-29

外部モニタの使い方

6.6 流量推定機能の使い方

6.6.1 オフセットデータの入力

WaveformパネルのBlood Pump Graph 画面の [Pump Flow (Estimated)] のグラフと値を表示するためには、オフセットデータを入力する必要があります。オフセットデータには、実際の血液ポンプの流量を使用しますので、何らかの方法でこれを計測する必要があります。

以下の場合は、Waveformパネルの [Pump Flow (Estimated)] の値がN/Aになります。

- 消費電力が7W以上の場合
- 流量測定の値が2L/min以下の場合
- 流量測定の値が10L/min以上の場合

この機能で計算された流量は近似値です。血液ポンプ機構と流量の計測方法に よっては推定値と実際の流量が異なることもあります。正確な流量を知りたい場合、 サーモダイリューションカテーテルのような適切な測定器を使用してください。

- 血液ポンプ流量を計測する機器(例として、サーモダイリューションカテーテル、経食道エコー、インピーダンス式流量計など)を準備します。
- 2. 患者から採血をして、ヘマトクリット値を計測します。
- 3. 外部モニタの電源を入れ、コントローラに接続します。

FRefer 接続と起動方法については「6.2 外部モニタの起動と終了」、「6.3 コントローラとの 接続」を参照してください。

- **4.** ヘマトクリット値が出た時点でController Configパネルの [Flow Estim] タブをタッチします。
- 5. [Password] 欄をタッチして表示されるKey Pad Bからパスワードを入力します。
- 6. 患者の最新のヘマトクリット値を [Current HCT] 欄と [Offset HCT] 欄に入力します。

図6.23 Flow Estim画面

- [Get Offset Data]ボタンをタッチすると、[Offset Power]欄と[Offset Speed]欄に計測した5秒の平均データが入力されます。
- 8. [OK] ボタンをタッチして、確認メッセージ画面を閉じます。

図6.25 確認メッセージ画面

- 9. ポンプ血流量を計測し、[Actual Flow]欄にデータを入力します。
- **10.** [Save to Controller] ボタンをタッチし、データを保存します。
- **11.** [OK] ボタンをタッチして、確認メッセージ画面を閉じます。

¢,	Flow-ra update	te estimation parameters h d.	ave beer
		ОК	

図6.26 確認メッセージ画面

12. [Start Estimation] ボタンをタッチすると、ランプが点灯して [Stop Estimation] ボタンに変わります。

- **13.** [Clear] ボタンをタッチして、パスワードをクリアします。
- 14. Waveformパネルを開きます。

外部モニタの使い方

6.6.2 流量推定の更新

患者の現在の状態を基に流量の推定をしますので、患者の最新のヘマトクリット値を [Current HCT] 欄に入力してください。

- 1. 外部モニタの電源を入れ、コントローラに接続します。
- **2.** Controller Configボタンをタッチします。
- 3. [Password] 欄をタッチして表示されるキーパッドからパスワードを入力します。
- **4.** [Current HCT] 欄をタッチして表示されるキーパッドからデータを入力します。
- 5. [Save to Controller] ボタンをタッチし、出てきた確認メッセージの[OK]ボタンを押し閉じます。
- 6. 流量推定が停止していたら、[Start Estimation] ボタンにタッチして流量推定を開始します。
- **7.** [Clear] ボタンをタッチして、パスワードをクリアします。
- 8. Waveformパネルを開きます。

6.7 トレンドデータ、 イベントデータ操作

トレンドデータは、血液ポンプのスピード、消費電力およびクールシールユニットの FPin、FPout、ス ピード、消費電力の各値を10分おきに記録し、約3ヶ月分のデータがコントローラ内のメモリに保存され ます。また、イベントデータとして、操作やアラームの履歴が約30,000件保存されます。

トレンドデータ、イベントデータは最大件数まで保存されると、古いデータから順番に上書きされます。

6.7.1 トレンドデータ、イベントデータを取得する

外部モニタを用い、コントローラ内のメモリに記録されているトレンドデータ、イベントデータをダ ウンロードすることができます。ダウンロードしたデータは、外部モニタ内で管理することができま す。

- 1. 外部モニタの電源を入れ、コントローラに接続します。
- **2.** 画面上のPatient IDが正しく入力されていることを確認します。入力されていない場合はダウンロードする前に、Controller Configパネルを開き、患者情報を入力してください。

コントローラ出荷時のPatient IDは"ID"となっているため、Patient IDの設定作業をしていない場合は、"ID"フォルダにデータが保存されます。
Patient IDを、""(空白)にした場合は、"ID_UNKNOWN"フォルダにデータが保存されます。

3. Data Logsパネルの[Data Selection]タブをタッチし、Data Selection画面を表示します。

図6.27 Data Selection画面

外部モニタの使い方

4. 外部モニタがコントローラに接続されていることを確認して、[Download from Controller] ボ タンをタッチします。ダウンロードが開始され、ダウンロード画面が表示されます。

Cancel

図6.28 ダウンロード画面

- 途中でダウンロードを終了する場合は、[Cancel] ボタンをタッチしてください。
- コントローラから外部モニタ接続ケーブルが外れるなどで通信ができない状態 (データが受け取れない状態)やダウンロードに失敗すると、エラーメッセージ 画面が表示されます。[OK]ボタンをタッチして画面を閉じ、もう一度ダウンロー ドし直してください。

	true	
Note	8	Data download has failed; cable disconnection. (Downloaded data has been deleted.)
		図6.29 エラーメッセージ画面

5. ダウンロードが完了すると、確認メッセージが表示されます。[OK] ボタンをタッチして閉じます。

Ý	Data download has	completed
	OK	Ĺ

6. ダウンロードが終了すると、[Patient ID] リストが最新の状態に更新されます。

6.7.2 トレンドデータ、イベントデータを読み込む

ダウンロードされているトレンドデータ、イベントデータを読み込んで、画面にグラフと数値および リストで表示することができます。

- Data Logs パネルの [Data Selection] タブをタッチし、Data Selection 画面を表示します。 Patient IDリスト(左側)からIDを選択すると、データリスト(右側)に保存されているトレンドデータ、イベントデータ、リアルタイムデータが表示されます。
- 2. [Patient ID] から患者 ID、右のデータリストから表示したいトレンドデータ、イベントデータ(Tr/Ev)を選択します。

2011.08.09 10:17:29	Patient (D; PAT	1EN7081	P00: 8124	EVHENT
Data Selecti	on 🚺	Trend Data	Event	Data
Selected Data:	PATIENT001 2011/	13/02 06:48:59 - 2012/04/06	i 15:58:00	
Patent II:		Select to Me	Data	
PETENTION	1	0001 Trite+ 201100302 08:405 1002 Pt 20110809 10:125 1000 Pt 20110809 10:125	9 - 2012/04/95 18:50:50 N - 2011/08/99 18:12:51 N - 2011/08/89 18:12:51 St - 2011/08/89 18:12:15	1
	H			
	-			-
	voort from	Desete	Downlog	_
Mamitor	Monitar	Data	from Contro	aller
Waveform	Data Lo	gs Controller	Config Sof	tware info

図6.31 Data Selection 画面

- 選択したデータの背景が黄色になります。
- スクロールバーまたは [▲] / [▼] ボタンをタッチすると、リスト表示を上下に 移動できます。
- Note • 読み込みデータのファイルが正しく保存されていない場合は、データの読み込み を確認するメッセージが表示されます。データの読み込みを中断する場合は [Yes] ボタン、継続する場合は [No] ボタンをタッチしてください。
- 3. [Select Data to Review] ボタンをタッチし、データをロードします。

目 Note リアルタイムデータ(Rt)を選択していると、 [Select Data to Review] ボタンを タッチできません。

4. [OK] ボタンをタッチして、確認メッセージ画面を閉じます。

÷,	The sele	cted data ha	ave been loaded
		ОК	

図6.32 確認メッセージ画面

外部モニタの使い方

5. [Trend Data] タブまたは [Event Data] タブをタッチし、トレンドデータまたはイベント データを表示します。

2011/08/09 19/01/07 Potient ID: PATIENTWIT Poti	CYNEROT LLAS DEL BURKE			TYNER BUT THAT IN BOOMS			
Data Sciencinos Trend Data Event Data Patient Do Autorege: 201106251 2010000 Data Sciencinos Trend Data Event Data Patient Do SAMPLE, DATA Data renge: 201106251 2010000 Data Renge: 201106251 2010000 Data renge: 201106251 2010000 Patient Do SAMPLE, DATA Data renge: 201106251 2010000 Data renge: 201106251 2010000 Data renge: 201106251 201000 Patient Do: SAMPLE, DATA Data renge: 201106251 201000 Data renge: 201106251 201000 Data renge: 201106251 201000 Patient Do: SAMPLE, DATA Data renge: 201106251 201000 Data renge: 201106251 201000 Data renge: 201106251 201000 Patient Do: SAMPLE, DATA Data renge: 201106251 201000 Data renge: 201106251 201000 Data renge: 201106251 201000 Patient Do: SAMPLE, DATA Data renge: 201106251 201000 Data renge: 201106251 201000 Data renge: 201106251 201000 Patient Do: SAMPLE, DATA Data renge: 201106251 201000 Data renge: 201106251 201000 Data renge: 201106251 201000 Data renge: 201106251 201000 Patient Do: SAMPLE, DATA Data renge: 20110620 201000 Data renge: 20110620 201000 Data renge: 20110620 201000 Data renge: 20110620 2010000 Patien	2011/08/09 10:19/11	Patient ID: PATIENT081	POD: #124 EVVHE/VOT	2011.08.09 10:20.02 Pat	Send ED: PATREWTOPY	POD: 0124	ENHEWD
Partner Liv Salar Leg Data Data range 2011/05/01 00:00:00:00:00:00:00:00:00:00:00:00:00:	Data Selection	Trend Data	Event Data	Data Selection	Trend Data	Event	Data
Curve Synch Sy	Publie ID/ SAMPLE_DAT	TA Data range: 20	11/05/01 09:00:00 - 2011/06/25 22:10:00	Patient ID: SAMPLE_DATA	Data range: 2011/4	15/01 09:00:00 - 201	1/06/25 22-10:00
We Deploying: 20100010 500:00 - 20100020 00:00:00 14 seylog Was West	Area Area Speed		Curson: 2911/05/27 08:30:00 [Bioad Pump] Power: 6.0 W Speed: 1877 rpm (Sol) Power: 3.0 W Speed: 2.4 kpm PFm: 70.3 kPa Deta P: 327.1 kPa (Other] Temp: 38 deg C	0013 201111/22 10.00171 10.00171 10.00171 0013 201111/22 11.0172 10.00171 0013 201111/22 11.0172 11.0172 0013 201111/22 10.0172 11.0172 0014 201111/22 10.0172 11.0172 0014 2014 2014 2014 2014 2014 2014 2014	CO1 CO1 and the trial CO1 and the constraint of the const	. (Control Alternation Control Control
	Waveform	Data Logs Controller	Config Software Info	Waveform	Data Logs Controller Co	ontig Soft	tware Info

• CPUにリセットが入った場合にはE-50と共に複数のイベントが発生します。 • 複数のイベントが同時発生した場合、保存する順番が前後する場合がありま Note す。 クリアのみが表示されている場合は状態の確認を行っている時の記録です。

■ イベントデータの見かた

1行の中に次のような情報が含まれています。

- 例: 00131 2011/11/22 12:14:40 E-42 [Det] CSU water leak.
 - с b d а е a:通し番号 b:イベント発生日時 c:イベントコード d:イベントの状態 -[Det]:イベントの発生 -[Clr]:イベントのクリア -赤:アラームの発生 -青:アラームのクリア -黒:ログデータ
 - e:イベントの簡単な説明

6.7.3 USBメモリから取り込む、USBメモリへ保存する

USB メモリに保存されているデータを読み込んで、画面にグラフと数値で表示することができます。 また、USBメモリヘデータを保存することもできます。

コントローラが接続されているときは、そのコントローラの持つPatient IDと異なるPatient IDは表示されません。

1. 外部モニタの電源ボタンを押します。

Refer) 起動方法については「6.2 外部モニタの起動と終了」を参照してください。

- 2. 外部モニタに USB メモリを接続します。メモリの認識に時間がかかる場合があります。時間 を少し空けてから操作してください。
- 3. Data Logsパネルの [Data Selection] タブをタッチします。
- 4. データの取り込み、またはデータを保存します。
 - USBメモリからデータを取り込む場合 [Import to Monitor] ボタンをタッチします。
 - USBメモリヘデータを保存する場合
 [Patient ID]からIDを選択し、[Export from Monitor]ボタンをタッチします。

A ALT LOSS CONTRACTOR				
2011.08.09 10:17:29	Patient ID: PA	TIENTOIT	POD: 0124	EVHENUT
Data Selection		Trend Data	Event	Data
Selected Data	PATIENT001 2011	/03/02 06:48:59 - 2012/04/08	i 15:58:00	
Petient ID:		Selact to Re	Data Wiew	
PETENTON	1	0001 Tritte 2019/03/02 00:401 0002 Pet 2019/05/09 10:12:	59 - 2012/04/85 18:50:60 24 - 2011/08/89 18:12:51	-
	-	8060 Rt 2019/00/09 10:121	54 - 2011/00/089 10:12:13	
	-			
Annort to Exp	art from	Derete	Downloa	đ
	or water		Tow Const	
Waveform	Data Lo	ogs Controller	Config Sof	tware info
	図6.34	Data Selection initiation	面	

- 5. データの取り込み、またはデータの保存が完了すると、確認メッセージが表示されます。[OK] ボタンをタッチして閉じます。
 - データの取り込みをした場合、Data Selection 画面の[Patient ID]とデータリストが更新されていることを確認します。

図6.35 確認メッセージ画面

 データを保存した場合、USBメモリの次のフォルダに保存されています。 C02Data\PatientID\YYYYMMDD_HHMMSS

図6.36 確認メッセージ画面

6. アクセスランプが消灯していることを確認して、USBメモリを抜きます。

6.7.4 データを削除する

1. 外部モニタの電源を入れます。

(アRefer) 起動方法については「6.2 外部モニタの起動と終了」を参照してください。

- 2. Data Logs パネルの [Data Selection] タブをタッチします。
- 3. [Patient ID] リストから ID、右のデータリストから削除したいトレンド・イベントデータまたはリアルタイムデータを選択します。

A RATE LEVEL CONTRACTOR		
2011.08.09 10:17:29	Patient ID: PATIENT081	POD: MIZH EVAHEAT
Data Selection	Trend Data	Event Data
Selected Data: PAT	IENT001.2011/03/02 06:48:59 - 2012/04/	05 15:58:00
Patient ID:	Selo to A	et Data Byview
PETENTON	0001 Tritte 2019/03/02 08:4 80/02 PH 2019/03/09 90:1	859 - 2012/04/95 18:50:00 *********************************
	8060 Rt 30190089 10:1	254-2011/08/89 18:12:15
		-
		Download
Monitor Monit	Data	from Controller
-	Y	
Waveform	Data Logs Controller	Config Software Info
	図 6.37 Data Selection I	阿爾

4. [Delete Data] ボタンをタッチします。

5. 削除したいデータが選択されていることを確認し、削除するなら [OK] ボタンを、削除しないなら [Cancel] ボタンをタッチします。

図6.38 確認メッセージ画面

	Erran
Note	Sector Failed to delete data. < <file access="" error="">></file>
	ОК
	図6.39 エラーメッセージ画面
削除が完了すると、確認メッ Patient ID]とデータリストが	セージが表示されます。[OK] ボタンをタッチして閉じま 更新されていることを確認します。
Contra alta Menage	8

図6.40 確認メッセージ画面

6-39

外部モニタの使い方

6.8 患者データの移動

コントローラ交換の際には、設定値や患者情報等のデータを旧コントローラから新コントローラに移動 させる必要があります。

- 1. 外部モニタの電源を入れ、旧コントローラに接続します。
- **2.** Controller Configパネルの [Setting Copy] タブをタッチします。
- 3. [Password] 欄をタッチして表示されるKey Pad Bからパスワードを入力します。
- **4.** [Get Parameters]ボタンをタッチして、旧コントローラのデータを取得します。取得された データは[Parameter List]に表示されます。

5. [OK] ボタンをタッチして、確認メッセージ画面を閉じます。

Ų,	All para	meters have bee	n imported
	Г	OK	

図6.42 確認メッセージ画面

- 6. 旧コントローラから外部モニタ接続ケーブルを外し、新コントローラに接続します。
- 7. [Set Parameters] ボタンをタッチします。

8. データを確認し、保存するなら [OK] ボタンを、保存しないなら [Cancel] ボタンをタッチ します。

9. [OK] ボタンをタッチして、確認メッセージ画面を閉じます。

8
orted.

図6.44 確認メッセージ画面

- **10.** [Clear Parameters] ボタンをタッチして、[Parameter List] をクリアします。
- **11.** [Clear] ボタンをタッチして、パスワードをクリアします。

6.9 パスワードについて

Controller Config パネルの表示・設定をする場合、パスワードの入力が必要になります。画面下の [Password] 欄にパスワードを入力してから操作を行ってください。

入力したパスワードは、最後にController Configパネルを表示してから60分後にクリアされます。再度、 Controller Configパネルを表示・操作する場合は、パスワードを入力し直してください。但し、Controller Configパネルの表示中は、パスワードはクリアされません。

■ パスワードの入力

1. [Password] 欄をタッチするとKey Pad Bが表示されます。

(アRefer) キーパッドの詳細については「6.4.5 Key Pad画面」を参照してください。

- 2. パスワードをタッチして入力し、[Enter] キーをタッチします。
- Controller Configパネルの使用が終わったとき、[Clear]ボタンを押し、パスワードをクリアします。

■ パスワードの管理

パスワードは、機器のトレーニング受講者にのみお教えしています。

EVAHEART LVAS

7. 製品仕様

7.1	EVAHEART システムの性能
7.2	血液ポンプ
7.3	インフローカニューレ7-3
7.4	アウトフローグラフト7-3
7.5	コントローラ
7.6	バックアップコントローラ7-4
7.7	クールシールユニット7-4
7.8	バッテリ
7.9	非常用バッテリ
7.10	充電器
7.11	AC/DC アダプタ(AA210)7-6
7.13	外部モニタ
7.14	安全規格への適合
7.15	システムの試験仕様7-8

1 システム概要

7.1 EVAHEARTシステムの性能

制御機能:

血液ポンプスピード クールシール圧

消費電力:

血液ポンプ EVAHEARTシステム全体 $800 \sim 3000$ rpm FPout $20 \sim 50$ kPa

22.5W(最大値)、8.5W(標準値) 75W(最大値)、27W(標準値)

流量

下記グラフ参照(平均値)

図7.1 EVAHEARTシステムの血液ポンプ圧と流量性能の関係

■ バッテリ:

電力供給可能時間(2本の満充電バッテリを接続した状態) 6時間以上(25℃、8.5W消費時)

Full Charge ランプ(残量確認ボタンを押した場合)緑 点灯 80%以上(概算値)

■製品仕様

■ 非常用バッテリ

電力供給可能時間 コントローラの非常用バッテリ残量表示

最低 30 分	(満充電時)
緑(F)	:残量が 80% 以上ある
黄	:残量が 50% ~ 80%
赤(E)	:残量が 50% 未満
約2時間(残量なしの状態から満充電まで)

充電時間

7.2 血液ポンプ

サイズ

51 X 67.5mm(血液吐出口および、血液ポンプケーブル接続部を除く)

重量

血液ポンプ本体:262g

ポンプケーブル:168g

スピード

800~3000rpm

電気的仕様

DC入力 15V

性能

(TRefer)「7.1EVAHEARTシステムの性能」を参照

7.3 インフローカニューレ

サイズ

内径:16mm 外径:23mm(プロキシマルカフ) 全長:67mm

重量

43g

7.4 アウトフローグラフト

サイズ

内径:16mm(GU20、GU40) 全長:410mm(GU20)、390mm(GU40)

内径:16mm(GU200) 全長:240mm収縮時(GU200) 人工血管の厚み:0.3mm(GU200)

重量

37g (GU20, GU40) 30g (GU200) 製**7** 仕様

7.5 コントローラ

サイズ

180 X 215 X 88mm

重量

1500g(クールシールユニット、非常用バッテリ含まず)

電気的仕様

DC入力: 18V〈AC/DCアダプタ〉、 14.8V〈バッテリ〉

DC出力: 15V〈血液ポンプ〉、 12V〈クールシールユニット〉

可聴式アラーム音量

70dB @1m

防水

防水レベル: IPX4

性能

(Transported by the second secon

7.6 バックアップコントローラ

サイズ

141 X 42 X 60mm

重量

200g

電気的仕様

DC入力: 14.8V

DC出力: 15V

防水

防水レベル: IPX4

性能

スピード:2000±100rpm(固定)

電源入力:バッテリ(最大2個)

連続運転時間:6時間(バッテリの残量の状態によって、バッテリ交換の必要がある)

7.7 クールシールユニット

サイズ

170 X 50 X 73mm

重量

345g (乾燥重量)

電気的仕様

DC入力: 12V

性能

(Trefer)「7.1EVAHEARTシステムの性能」を参照

7.8 バッテリ

サイズ

79 X 173 X 22mm

重量

490g

バッテリ種類

リチウムイオン2次電池

電気的仕様

公称電圧 容量 標準充電時間 充電電流 充放電回数 14.8V 5200mAh (76Wh) 3.0時間(残量なしの状態から満充電にした場合) 3.0A (最大) 500回

防水

防水レベル:IPX4

性能

(FRefer) 7.1 本システムの性能」を参照

7.9 非常用バッテリ

サイズ

130 X 55 X 26mm

重量

175g

バッテリ種類

リチウムイオン2次電池

電気的仕様

公称電圧	14.8V
容量	1620mAh (22Wh)
標準充電時間	約2時間(残量なしの状態からコントローラで満充電にした場合)

防水

防水レベル:IPX4

7.10 充電器				
サイズ				
141 X 42 X 60mm				
重量				
185g				
電気的仕様				
DC入力	18.0V			
DC出力	16.8V			

7.11 AC/DC アダプタ (AA210)

サイズ

133 X 39 X 55mm (ケーブル部含まず)

重量

430g

電気的仕様

AC入力	100~120V、47~63Hz(1.62~0.72A)、最大75W
DC出力	18V、3.5A
ヒューズ	2.0A、250V(内蔵)

7.12 AC/DC アダプタ (AA211)

サイズ

129 X 31 X 51mm (ケーブル部含まず)

重量

410g **雷気的仕様**

AC入力	100~240V、47~63Hz(1.62~0.72A)、最大75W
DC出力	18V、3.5A
ヒューズ	2.0A、250V(内蔵)

7.13 外部モニタ

外部モニタは「EVAHEART LVAS Monitor」をインストールしたタブレットPCを使用する。

7.14 安全規格への適合

下記の規格に準拠:

IEC60601-1-8: 2006/AMD1:2012

IEC60601-1: 2015 SER or IEC60601-1:2005+AMD1:2012 CSV

IEC60601-1-2: 2007, IEC60601-1-2: 2014

International Standards, Medical Electronic Equipment

EVAHEARTシステムの分類

リスク保護のタイプとランクの規格を以下に示します。

項目	仕様
動作モード	連続
滅菌方法	EOG滅菌(体内構成品)
電撃に対する保護	クラスⅡ
装着部の電撃に対する保護	CF型
空気ないし酸素との可燃性麻酔混合気、または 亜酸化窒素(笑気)存在下での安全性	空気ないし酸素との可燃性麻酔混合気、または亜酸化窒素(笑気)存在下での使用に適さない機器
液体の侵入に対する保護	IPX4
	- コントローラ
	- バックアップコントローラ
	- バッテリ
	- 非常用バッテリ
機械的強度	IEC60601-1-11 and CEI,IEC TR 60721-4-7 Edition
落下、振動、衝撃	1.1 2003-08, class 7M3
航空機搭載機器の電波感受性	RTCA DO-160F セクション20、カテゴリR
航空機搭載機器の無線周波エネルギー放射	RTCA DO-160G セクション21、カテゴリM
患者環境で使用できる製品	充電器を除くすべての機器で可能
適合部位	血液ポンプ

7.15 システムの試験仕様

指針及び製造業者の宣言ー電磁エミッション				
本システムは、下記の電磁環境での使用を意図している。顧客または EVAHEART のユー ザーは、それが下記の環境で使用されることを保証することが望ましい。				
エミッション試験 適合性 電磁環境一指針				
RF エミッション CISPR 11	グループ 1	本システムは、内部のためにだけRFエネルギーを使 用する。したがって、そのRFエミッションは、非常に 低く、近くの電子機器中にどんな干渉も引き起こさな い。		
RF エミッション CISPR 11	クラス B	本システムは下記を含むすべての施設での使用に適 する。		
高調波エミッション IEC 61000-3-2	クラスA	含むのは、家庭施設、及び家庭目的に使用される 建物に電力を供給する公共の低電圧用の配電網に直 接接続された施設		
電圧変動 / フリッカエミッション IEC 61000-3-3	適合]女]女小してれして、川巴口又。		

IEC(国際電気標準会議規格) 60601-1-2

🕂 注意

- 使用環境の悪条件下(極端な温度、湿度、圧力や強い磁界)では、本システムが正しく動作しない可能 性がありますので、注意してください。
- 本システムは非常に強い電磁界下においては、アラームの誤作動が生じる可能性があります。アラームに 誤作動が生じた場合でも血液ポンプ駆動回路には影響はないため、落ちついてその場から離れてください。

指針及び製造業者の宣言一電磁イミュニティ

本システムは、下記の電磁環境での使用を意図している。顧客または EVAHEART のユー ザーは、それが下記の環境で使用されることを保証することが望ましい。

	の下記の境境で区方で1		
イミュニティ試験	IEC 60601 試験レベル	適合性レベル	電磁環境一指針
静電気放電(ESD) IEC 61000-4-2	接触:+/- 8kV 気中:+/- 2kV, +/- 4kV, +/- 8kV, +/- 15kV	接触:+/- 8kV 気中:+/- 2kV, +/- 4kV, +/- 8kV, +/- 15kV	床は木材、コンクリートまたは陶性タ イルであることが望ましい。床板が 合成物質で覆われている場合、相対 湿度は、少なくとも5%であることが 望ましい。
電気的な高速過渡 現象/	+/- 2kV 電源線用	+/- 2kV 電源線用	電源電力品質は、典型的な商用または病院環境のものであることが望
バースト	+/- 1kV 入出力線用	+/- 1kV 入出力線用	ましい。 ケーブルの全長が3m++満の装置で
IEC 61000-4-4			あるため、入出力線の試験は該当しない。
サージ	+/- 0.5kV, +/- 1kV ライ ン間	+/- 0.5kV, +/- 1kV ライ ン間	電源電力品質は、典型的な商用または病院環境のものであることが望ましい
120 01000-4-5	+/- 0.5kV, +/- 1kV, +/- 2kV 線アース間	+/- 0.5kV, +/- 1kV, +/- 2kV 線アース間	クラス II の装置であるため、アース 間の試験は該当しない。
電圧ディップ、瞬 停、及び電源入力 線での電圧変動	< 5% Ut (> 95% ディップ Utにて) 0.5 サイクル	< 5% Ut (> 95% ディップ Utにて) 0.5サイクル	電源電力品質は、典型的な商用ま たは病院環境のものであることが望 ましい。本システムのユーザーが、 停電時の連続操作を要求した場合、
IEC 61000-4-11 ed.3	40% Ut (60% ディップ Utにて)	40% Ut (60% ディップ Utにて)	システムの電源は、無停電電源装置または電池にすることが推奨される。
	70% Ut	70% Ut	
	(30% ディップ Utにて)	(30% ディップ Utにて)	
	25サイクル	25サイクル	
	< 5% Ut	< 5% Ut	
	(295%) 199 Offe C) 5秒用	(295%) 1997 Offe () [5秒用	
電力周波数	0 % Ut 0.5 周期	0 % Ut 0.5 周期	電源周波数磁界は、典型的な商用
(50/60 Hz) 磁界	位相角 0°, 45°, 90°, 135°, 180°, 225°, 270°,	位相角 0°, 45°, 90°, 135°, 180°, 225°, 270°,	または病院環境内の典型的な場所 でのレベルが望ましい。
IEC 61000-4-8	515	515	
	0 % Ut 1 周期及び70 % Ut 25/30 周期	0 % Ut 1 周期及び70 % Ut 25/30 周期	
	単相 位相角0°	単相 位相角0°	
	0 % Ut 250/300 周期	0 % Ut 250/300 周期	
備考:Utは検査レイ	ドルを加える前の交流電源	電圧である。	

指針及び製造業者の宣言ー電磁イミュニティ					
本システムは、下記の電磁環境での使用を意図している。顧客またはEVAHEARTのユーザー					
は、それが下記の環境で使用されることを保証することが望ましい。					
イミュニティ試験	IEC 60601 試験レベル	適合性レベル	電磁環境一指針		
			携帯型及び移動型のRF通信機器は、ケーブ ルを含む本システムのいかなる部分に対して も、送信機の周波数に適用される式から計算さ れた推奨分離距離より近くないところで使用する ことが望ましい。		
			推奨分離距離		
伝道RF IEC 61000-4-6	0.15 MHz~80 MHz の間で3 V	0.15 MHz~80 MHz の間で3 V	d = 0.35 √ P		
	0.15 MHz~80 MHz の間の ISM 帯域及び アマチュア無線帯域で 6 V	0.15 MHz~80 MHz の間のISM 帯域及 びアマチュア無線帯 域で6 V	d = 1.2 √ P		
	80 %振幅変調 (1 kHz)	80 %振幅変調 (1 kHz)			
放射 RF IEC 61000-4-3	10 V/m 80 MHz~2.7 GHz 80 %振幅变調	10 V/m 80 MHz~2.7 GHz 80 %振幅変調	d = 0.6 √ P 80MHz ~ 800MHz d = 1.15 √ P 800MHz ~ 2.5GHz		
セクション20、	(1 kHz)	(1 kHz)	d = 0.08 √ P 400 MHz ~ 800 MHz		
カテコリR			d = 0.15 √ P 800 MHz ~ 8 GHz		
			ここで P は、送信機の最大出力定格で単位は ワット(W)で、送信機製造業者が指定したもので あり、dは推奨分離距離で単位はメートル(m)で ある。 ^b		
			固定のRF送信機からの電磁界強度は、電磁気の現地調査 ^c によって決定されるが、これは、各周波数範囲 ^d において適合性レベル未満であることが望ましい。		
			干渉が、 次の記号でマークされた機器の近くで 生じるかもしれない。		
			$(((\bullet)))$		
備考 1 80MHz 及	をび 800MHzにおいては	、より高い周波数範囲	 困を適用する。		
備考 2 これらの打 の吸収及る	皆針は、すべての状況に び反射によって影響され	こ適用するとは限らない る。	。電磁気の伝搬は、構造、物体及び人々から		
a. 150kHzと80MHzの間のISM(工業、科学及び医学)周波数帯は6.765~6.795MHz、13.553~13.567MHz、26.957~ 27.283MHz及び40.66~40.70MHzである。					
 b. 150kHzと80MHzとの間のISM周波数帯内、及び80MHz~2.5GHzの周波数範囲内の適合性レベルは、移動形/携帯形の 通信機器が不注意に患者エリアに持ち込まれた場合、干渉を起こす可能性を減らすように意図されている。この理由か ら、追加係数10/3が、これらの周波数範囲内における送信機用の推奨分離距離を計算するのに使用される。 					
c. 固定送信機、例えば、無線(携帯/コードレス)電話基地局及び陸上移動無線、アマチュア無線、AM及びFMラジオ放送並びにTV放送からの電磁界強度は、理論上、正確には予想できない。固定のRF送信機に起因する電磁環境を評価するために、電磁気の現地調査が考慮されることが望ましい。本システムが使用される場所の正確な電磁界強度が、適用されるRF適合性の上記のレベルを超過する場合、本システムは、正常動作を検証するために観察されることが望ましい。異常な性能が観察される場合、追加の手段、例えば、本システムの向きまたは場所を変えることが必要かもしれな					
い。 d. 周波数範囲150	い。 d. 周波数範囲150kHz~80MHzで、電界強度は3V/m未満であることが望ましい。				

携帯形及び移動形のRF通信機器と、本システムとの間の推奨分離距離					
本システムは、 放射RF妨害が制御される電磁環境内での使用が意図されている。					
顧客または本システムのユーザーは、携帯形及び移動形のRF通信機器 (送信機) と、本システ					
ムとの間の最小調	e離を維持することに	よって、 電磁十渉の)防止を支援できる。		
最小距離は、 下	記に推奨されるように	こ、通信機器の最大	出力に従うものとする	5.	
そ信様の		送信機の周波数	数による分離距離		
达信機の	m				
定格最大出力 W/	150kHz ~ 80MHz	150kHz ~ 80MHz	80MHz ~ 800MHz	800MHz ~ 2.5GHz	
	d = 0.35 √ P	d = 1.2 √ P	d = 0.6 √ P	d = 1.15 √ P	
0.01	0.035	0.12	0.06	0.115	
0.1	0.11	0.38	0.19	0.36	
1	0.35	1.2	0.6	1.15	
10	1.1	3.8	1.9	3.6	
100	3.5	12	6	11.5	

上に列記されていない最大出力定格の送信機については、メートル(m)単位の推奨分離距離dは、送信機の 周波数に適用される式を使用して決定できる。ここで、Pは単位がワット(W)の送信機の最大出力定格であり, 送信機製造業者が指定するものである。

備考 1:80MHzと800MHzにおいてはより高い周波数範囲を適用する。

備考 2: 150kHzと80MHzとの間のISM(工業、科学及び医学)周波数帯は、6.765~6.795MHz、13.553~ 13.567MHz、26.957~27.283MHz及び40.66~40.70MHzである。

備考 3: 追加係数10/3が、次の周波数範囲内における送信機用の推奨分離距離を計算するのに使用される。すなわ ち、150kHzと80MHzとの間のISM周波数帯及び80MHz~2.5GHz周波数範囲内である。これは、移動形/ 携帯形の通信機器が不注意に患者エリアに持ち込まれた場合、干渉を起こす可能性を減らすためである。

備考 4: これらの指針は、すべての状況に適用するとは限らない。電磁気の伝搬は、構造、物体及び人々からの吸収 及び反射によって影響される。

近接電磁界				
試験周波数 (MHz)	帯域 (MHz)	変調	試験レベル (V/m)	距離 (m)
385	380 - 390	パルス変調 18Hz	27	0.3
450	430 - 470	パルス変調 18Hz	28	0.3
710 745 780	704 - 787	パルス変調 217Hz	9	0.3
810 870 930	800 - 960	パルス変調 18Hz	28	0.3
1720 1845 1970	1700 - 1990	パルス変調 217Hz	28	0.3
2450	2400 -2570	パルス変調 217Hz	28	0.3
5240 5500 5785	5100 - 5800	 パルス変調 217Hz	9	0.3

7.16 基本性能

	単位	最低	公称	最高
血液ポンプ回転数範囲	rpm	1,600		2,200
血液ポンプ回転数誤差	+/-rpm			100

8. EVAHEARTシステムの構成品 ・ 付属品とカタ ログナンバー

システムの準備と操作

定 **5** 点 絵

8.1 EVAHEARTシステムの構成品 · 付属品とカタログナンバー

EVAHEARTシステムの構成品および付属品のカタログナンバーは、以下の通りです。

EVAHEART構成品名	カタログナンバー
血液ポンプセット	BP310
インフローカニューレ(ダブルカフチップレスカニューレ)	GU100
アウトフローグラフト	GU20
アウトフローグラフト(人工血管内面にコーティング有)	GU40
ポリエステルアウトフローグラフト	GU200
クールシールユニット	CS210
クールシール流路洗浄キット	CS220
クールシール液管理キット	CS230
コントローラ	CT210
コントローラ接続キット	CT221
非常用バッテリ	CT230
バックアップコントローラ	CT240
オペレータキー	CT250
バッテリ	BT210
AC/DCアダプタ	AA210、AA211
充電器	CH210
外部モニタ	EM210
外部モニタ接続ケーブル	EM220
ナースコールケーブル	EM230
トンネラ	SS100
コアリングナイフ	SS170
レンチ	SS30
レンチ(非滅菌)	SS31
ディセクタ	SS40
ディセクタ(非滅菌)	SS41
ポンプキャップセット	SS50
ポンプサイザー	SS150
キャリングバッグ	PS210
アウターストラップ	PS31
ポンプケーブルカバー	PS280、PS281
チューブ固定バリア	9781

EVAHEART LVAS

付録

付録1 イベントコード一覧

下記に示すイベントはすべてコントローラに保存されます。アラームを伴うイベントの場合、イベントコードがディスプレイに表示され、アラームランプが点灯・点滅します。対処が必要なイベントですので、対処参照先ページを参照してください。

アラームを伴わないイベントの場合、ログデータとしてコントローラに保存されます。 ディスプレ イにイベント表示はなく、アラームランプも消灯したままです。

● 可聴式アラームについて

可聴式アラームは、アラーム発生時に鳴ります。緊急度により3段階に分かれています。緊急度が 高の場合は発生直後から最大の音量ですが、緊急度が中または低では時間の経過とともに大きくな ります。

- 緊急度が高 : ピピピッピピー) + ~3秒無音の繰返し
- 緊急度が中 : (ピピピッ) + ~3秒無音の繰返し
- 緊急度が低 : (ピピッ) + ~15秒無音の繰返し

イベント コード	現象/考えられる原因	ディスプレイへの イベントコード 表示の有無	トラブル シューティング 参照先ページ
E-01	コントローラの内部通信異常	有	P4-5
E-10	バッテリ未接続警告	有	P4-17
E-11	非常用バッテリ残量警告	有	P4-17
E-12	非常用バッテリ駆動警告	有	P4-17
E-13	非常用バッテリ未接続警告	有	P4-17
E-14	全電源の残量なし	有	P4-18
E-15	電源基板高温度異常	有	P4-5
E-16	電源回路の動作異常による 予備回路への切替発生	有	P4-5
E-20	血液ポンプの消費電力下限異常	有	P4-6
E-21	血液ポンプの消費電力上限異常	有	P4-7
E-22	血液ポンプのスピード下限異常	有	P4-8
E-23	血液ポンプのスピード上限異常	有	P4-9
E-24	血液ポンプ駆動基板高温度異常	有	P4-9
E-30	血液ポンプの再起動発生(5分以内に2回以上発生) ・血液ポンプの急激な回転抵抗上昇 ・コントローラ制御回路の故障	有	P4-10
E-31	血液ポンプの再起動発生	なし	_

EVAHEART C02シリーズ 取扱説明書〔機器操作・機器管理編〕

イベント コード	現象/考えられる原因	ディスプレイへの イベントコード 表示の有無	トラブル シューティング 参照先ページ
E-32	駆動ケーブルの異常 ・駆動ケーブルコネクタの未接続 ・駆動ケーブル内のワイヤ損傷、断線	有	P4-11
E-33	血液ポンプ駆動基板の異常による 予備回路への切替発生	有	P4-12
E-34	システムエラー	有	P4-12
E-40	圧力センサFPin上限異常 ・フィルタ目詰まり	有	P4-13
E-41	クールシールユニットのポンプスピード下限異常 ・血液ポンプケーブル(クールシールチューブ)のキンク ・リザーバ液量超過	有	P4-14
E-42	クールシールユニットのポンプスピード上限異常 ・クールシールユニット、クールシール流路、メカニカ ルシールからの液漏れ	有	P4-15
E-43	リザーバ液量低下 ・クールシールユニット、クールシール流路、メカニカ ルシールからの液漏れ	有	P4-16
E-45	クールシールユニットの故障	有	P4-16
E-50	電源ONによるソフトウェアの開始	なし	—
E-51	アラームリセットボタンの押下	なし	—
E-53	血液ポンプの駆動開始	なし	—
E-54	血液ポンプの駆動停止	なし	_
E-55	クールシールユニットの駆動開始	なし	—
E-56	クールシールユニットの駆動停止	なし	—
E-57	設定用の認証状態	なし	_
E-60	AC/DC アダプタの接続	なし	—
E-61	AC/DCアダプタの取り外し	なし	—
E-62	外部バッテリ1の接続	なし	_
E-63	外部バッテリ1の取り外し	なし	_
E-64	外部バッテリ2の接続	なし	_
E-65	外部バッテリ2の取り外し	なし	_
E-68	クールシールユニットの接続	なし	_
E-69	クールシールユニットの取り外し	なし	_
E-72	患者データの設定	なし	—
E-73	時刻設定の実施	なし	_
E-80	非常用バッテリの使用期限切れ	なし	_
E-81	外部バッテリ1の使用期限切れ	なし	_
E-82	外部バッテリ2の使用期限切れ	なし	_
E-83	クールシールユニットの使用期限切れ	なし	_
E-84	コントローラの使用期限切れ	なし	—

■付録1 イベントコード一覧■■■

イベント コード	現象/考えられる原因	ディスプレイへの イベントコード 表示の有無	トラブル シューティング 参照先ページ
E-90	外部バッテリの切替	なし	_
E-91	外部バッテリ1の使用開始	なし	_
E-92	外部バッテリ2の使用開始	なし	_
E-93	外部バッテリ1の残量警告(20%未満)	なし	_
E-94	外部バッテリ2の残量警告(20%未満)	なし	_
E-95	外部バッテリ1の残量なし	なし	_
E-96	外部バッテリ2の残量なし	なし	_
E-97	外部バッテリ(片方)の未接続	なし	_

アイコン	現象	対処方法	
	非常用バッテリの使用期限切れ	新しい非常用バッテリと交換してください。	
) m an	バッテリ1の使用期限切れ	使用期限の切れたバッテリの使用をやめ、新品と	
æ <mark>⊪</mark> 2	バッテリ2の使用期限切れ	交換してください。	
M	コントローラの使用期限切れ	新しいコントローラと交換してください。	
	安全機構による血液ポンプの 再起動発生	患者の容態を確認して、アラームリセットボタン を押します。イベントコード "E-30" がディスプレ イに表示されている場合は、「4.アラームとトラブ ルシューティング」の「4.1.1アラーム」に従って 対処してください。	

付録2 クールシールシステム

クールシールシステムの循環により、クールシール液がシールリングとシートリングの隙間に供給され、クールシール液の層を形成します。圧力、浸透圧、膠質浸透圧の勾配によってごく微量のクール シール液が血液側に移動します。血液側からも、血漿成分の一部がクールシール液側に移動します。

クールシール設定圧を上昇させると摺動面圧が上昇しますので、クールシール液がシールリングと シートリングの隙間により多く供給されます。

付録3 モータ駆動原理と脱調

EVAHEARTのモータはブラシレスセンサレスモータを用いています。ブラシ、センサは含まれておらず、寿命を短くする要因が少ないため、長寿命で耐久性に優れたモータです。

● 動作原理

磁石の極(N,S)に対して、コイルに流す電流を切り替えて、常に回転力が生まれるように制御します。センサレス駆動では、磁石の回転角度を計算によって予測し、コイルに流す電流を切り替えます。

● 脱調と再起動

回転抵抗が急に大きくなると、磁石の予測回転角度と実際の回転角度とにずれが生じることがあり、 この現象を"脱調"と言います。脱調すると回転力が出ない位置のコイルに電流を流してしまいます。 急な回転抵抗により生じた回転角度のずれを修正するために、モータを再起動します。

復帰:3.5秒

×

時間

付録4 ポンプケーブルの取り扱い

EVAHEART 2では、ポンプケーブルの柔軟性が向上し、細くなっています。皮膚貫通部への負担を軽減する一方で、ポンプケーブルのキンク等が発生しやすくなっております。ポンプケーブル内部にはクールシール液が循環しており、キンク等が発生すると、クールシール液循環が一時的に停止となります。

ポンプケーブルの取り扱いにつきまして、以下の点について注意ください。

付録5 緊急時のバックアップコントローラへの交換

現在使用しているコントローラに、血液ポンプの駆動に影響を与えるような重大な故障が発生した場合は、速やかにバックアップコントローラに交換します。

- 可能な場合には、故障したコントローラにも電力供給を続けてください。
 クールシールシステムをコントローラで駆動させるためです。
- バックアップコントローラ使用時には、バッテリのコネクタを奥まで挿し込んで確実に接続してください。 バックアップコントローラは非常用バッテリが搭載されておらず、また AC/DC アダプタも使用 できないため、より注意深い電源管理が必要です。
- バックアップコントローラの各ランプ表示を注意深く観察するようにしてください。
 バックアップコントローラには、アラーム音を出す機能がありません。バッテリランプには常に 注意をしてください。
 - 1. コントローラをキャリングバッグから取り出します。
 - 2. コントローラのフタのサイドにあるレバーを矢印の方向にスライドさせ、フタを開けます。
 - 3. バックアップコントローラのフタを取り外し、バッテリ接続部に予備の満充電のバッテリを 接続します。

次の操作を、出来る限り素早く行います。
 ①コントローラから駆動ケーブルのコネクタを引き抜き、
 ②直ちにバックアップコントローラに接続し(赤い印を合わせて挿し込む)ます。

- 5. バックアップコントローラのポンプランプが緑に点灯していることを確認します。また、患者の状態が良好であることを確認します。
- 6. 担当の医師に連絡し、指示を仰いでください。
付録6 バッテリ交換

表示パネルのバッテリエンプティランプが点滅(残量20%未満)または点灯(残量なし)した場合は、 満充電のバッテリと交換してください。

- 1. 交換用のバッテリの残量確認ボタンを押し、Full Charge(満充電) ランプが緑に点灯することを確認します。
- バッテリエンプティランプが点滅(また は点灯)したバッテリを取り外します。

 ①コネクタをバッテリ接続部から 取り外します。
②ラッチを押し下げます。
③手前に引き出します。

3. 交換用バッテリをコントローラに 接続します。

> ①収納部下部に挿し込みます。
> ②ラッチがカチッと音がするまで 押し込みます。
> ③コネクタをバッテリ接続部に 接続します。

4. コネクタを軽く引っ張り、抜けないことを確認します。

5. 交換済みのバッテリはすぐに充電し、いつでも使用可能な状態にしておきます。

付録7 シンボルマーク

シンボルマーク	説明
IPX4	防水レベル:IPX4
Li-ion	リチウムイオン電池のリサイクルマーク
	電池の分別回収のマーク
CE	CEマーク
PSE	PSEマーク 特定以外の電気用品
PSE	PSEマーク 特定電気用品
A	感電に注意
2	再使用禁止
	説明に従った操作をしてください
	装着部の電撃に対する保護:CF型

■付録7 シンボルマーク■■■

シンボルマーク	説明
	電撃に対する保護:2重絶縁 (IEC60601-1)
	注意
	取扱説明書参照
Store at:	保管温度期限
Use at:	使用温度制限
	使用期限
	製造日
SN	シリアルナンバー
STERILE EO	エチレンオキサイドガス滅菌
MR	MRIの使用禁止
NON STERILE	非滅菌

システム

体外構成品の機能チェックシステムの準備と操作 アラームとトラブルシューティング

外部モニタの使い方 製品仕様 システムの構成品・付属品とカタログナンバー 8

連絡先 サンメディカル技術研究所 テクニカルサポート 050-5305-3057 tech@evaheart.co.jp

高度管理医療機器 特定保守管理医療機器 一般名称 植込み型補助人工心臓システム 販売名 植込み型補助人工心臓EVAHEART

医療機器承認番号 22200BZX00939000

EVAHEART C02シリーズ 取扱説明書 〔機器操作・機器管理編〕 発行:株式会社 サンメディカル技術研究所 〒392-0012 長野県諏訪市四賀2990

Printed in Japan